Quantifying the non-equilibrium activity of an active colloid
Abstract
Active matter systems exhibit rich emergent behavior due to constant injection and dissipation of energy at the level of individual agents. Since these systems are far from equilibrium, their dynamics and energetics cannot be understood using the framework of equilibrium statistical mechanics. Recent developments in stochastic thermodynamics extend classical concepts of work, heat, and energy dissipation to fluctuating non-equilibrium systems. We use recent advances in experiment and theory to study the non-thermal dissipation of individual light-activated self-propelled colloidal particles. We focus on characterizing the transition from thermal to non-thermal fluctuations and show that energy dissipation rates on the order of ∼kBT s−1 are measurable from finite time series data.
- This article is part of the themed collection: Active Matter