Qing-Sheng
Li†
ab,
Ying-Qi
Wang†
a,
Yue-Rong
Liang
a and
Jian-Liang
Lu
*a
aTea Research Institute, Zhejiang University, China. E-mail: jllu@zju.edu.cn; Tel: +86 571 88982704
bInstitute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
First published on 3rd November 2020
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Tea, made from the tender shoots of the Camellia sinensis, is a worldwide-consumed herbal beverage with various pharmacological functions such as antioxidant,8 antidiabetic,9 anti-tumor,10 and anti-β-amyloid.11 In addition, tea also has anti-allergic ability because of its multiple bioactive compounds such as polyphenols, polysaccharides and saponins. Recent evidence has shown that leaves harvested from special tea cultivars with high content of methylated catechins have better effects in alleviating allergic symptoms. However, more fundamental research is still needed to prove the effects of tea on the prevention and treatment against allergy, and the anti-allergic bioactive compounds of tea need further characterization. This review summarizes recent research on the anti-allergic effects of tea and tea components, including in vivo and in vitro studies, and offers directions for further study.
Tea, as a natural herbal beverage, exerts anti-allergic effects not only in allergy prevention, but also in allergy treatment. It has been proved that tea has the anti-allergic ability against food allergy, respiratory allergy, atopic dermatitis and anaphylaxis. Generally, the down-regulated ratios of IgE and histamine are main indexes to evaluate the anti-allergic ability of certain compounds such as polyphenols, saponins and polysaccharides. The essential allergy phases interfered with by compounds in tea are postulated as follows (Fig. 1): (1) inhibiting allergen–IgE complex formation; (2) reducing FcεRI expression or allergen–IgE complex binding to FcεRI; (3) balancing Th1/Th2/Th17/Treg systems; and (4) inhibiting cytokine release of Th2 cells.17–19 Among the four aspects, tea modulates the sensitization of the human body toward allergens through the former two ways, whilst the latter two means help the human body to alleviate allergy symptoms.
Methylated catechins, a group of catechin derivatives, have drawn attention from researchers for their superior anti-allergic ability to regular catechins.25–27 Combined with the fact that methylated catechins can be detected as metabolites in human serum and urine after tea or catechin consumption, methylated catechins may contribute to the anti-allergic ability of tea more directly.28–30 Drinking tea with methylated catechins for a long term can significantly alleviate allergy symptoms, such as throat pain, nose-blowing and tears.31 Class I O-methyltransferase (CsOMT) isolated from tea cultivars can synthesize EGCG3′′Me, EGCG4′′Me, (−)-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3′′,5′′diMe), and (−)-3-O-methyl-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3′,3′′,5′′triMe) from EGCG.32,33 Among these methylated catechins, EGCG3′′Me and EGCG4′′Me, which are the major methylated catechins, have been found in multiple tea cultivars from Japan and China.34,35 The average content of EGCG3′′Me in regular tea cultivar is less than 0.45%, while it could reach 2.0% in specific cultivars such as ‘Benifuuki’.35–37 However, EGCG3′′Me can exhibit better anti-allergic effects even at low concentration because of its high bioavailability and bioactivity. The absolute quantity of EGCG3′′Me is only one fifth of that of EGCG in ‘Benifuuki’, but the anti-allergic effect of EGCG3′′Me is higher than that of EGCG.38–40 Because of the high bioavailability of the EGCG3′′Me, it could significantly relieve allergy symptoms by inhibiting mast cell activation, histamine release and cytokine production.39,41 One of the underlying causes of high efficiency of methylated catechins may be that the methyl groups added onto regular catechins increase their lipophilicity, thus enhancing the absorptivity of catechins.
Quercetin has anti-allergic abilities in inhibiting mast cell activation, histamine release, and eosinophilic inflammation. Quercetin can stabilize the membrane of mast cell, inhibit the release of histamine, leukotrienes (LTs), prostaglandin D2 (PGD2), and granulocyte macrophage-colony stimulating factor (GM-CSF).47 Meanwhile, quercetin can down-regulate the gene expression and decrease the production of the relevant cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8 in vitro directly or collaboratively.48 Moreover, quercetin has better function than the typical mast cell stabilizer named cromolyn in inhibiting IL-8 and TNF-α release, which offers a strong evidence for preventing allergy by a natural product.49 Essential mechanisms of the action may be related to the fact that quercetin can decrease the cytosolic calcium level, inhibit the NF-κB activation and the MAPK activity.50,51 Besides, quercetin can also inhibit the synthesis of downstream enzymes such as tryptase, histidine decarboxylase, phospholipase A2 and eosinophil peroxidase.52–54 Briefly, quercetin is an inhibitor of human mast cell activation via the inhibition of Ca2+ influx and the prevention of histamine, LTs and PGs release.
Orally administration with kaempferol is effective to alleviate symptoms of OVA-induced murine model of food allergy and allergic asthma. As far as food allergy prevention, kaempferol can reduce diarrhea rate and anaphylaxis risk with decreased levels of IL-4, IL-5, and IL-13.55 In respiratory allergy, kaempferol can alleviate the infiltration of eosinophils and mast cells through inhibiting the anti-α-smooth muscle actin expression in the airways and blocking their degranulation in the lung tissue, as well as reducing IgE, histamine and IL-4 levels, and increasing interferon-γ (IFN-γ) content.56,57 A cytokine named IL-32 has been observed above normal level in the nasal mucosa of AR patients, and it significantly elevates the downstream thymic stromal lymphopoietin (TSLP) production in monocytes. Treating with kaempferol to murine model decreases the IL-32 and TSLP levels, thus inhibiting the TSLP-driven Th2 inflammatory cell infiltration, cytokine secretion, and IgE production.58 Hemeoxygenase (HO)-1 is generally known as a rate-limiting enzyme in degradation of heme, while it also has the ability to transfect mast cells to decrease degranulation.59 Kaempferol can improve HO-1 expression to inhibit histamine and β-hexosaminidase release.60 Those evidences suggest kaempferol has anti-allergic abilities in relaxing airway muscles and inhibiting histamine release.
Compounds | Methods | Models | Effects | Mechanisms | Ref. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Note: The percentages in the brackets are the concentration ranges of selected compounds in dry tea leaves or seeds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Polyphenols (18%–36%) | Catechins (12%–24%) | In vivo | BALB/c mice | Inhibit IgE, IgG1 and mMCP-1 release; reduce IL-13 and IL-12a expressions | Reduce T-bet and GATA-3 expressions | 21 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhibit IgE, histamine, IL-1β, IL-4, and IL-6 release | Inhibit the mRNA and protein expressions of COX-2 | 22 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ddY mice | Inhibit the release of IL-4 from APC and Th2 cells; inhibit the release of IgE from B cells | 23 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C3H/HeJ mice | Reduce IgG2a and mMCP-1 levels | Balance the Th1/Th2 system; increase Th17 cell populations | 24 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ICR mice | Reduce histamine and IL-4 levels | Bind to FcεRI | 94 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | KU812 cells | Reduce the expressions of α-chain and γ-chains of FcεRI | 17 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RBL-2H3 cells | Reduce mast cell degranulation | Inhibit the phosphorylation of Lyn, Syk, Akt and NF-κB | 94 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Methylated catechins (0.45%–2%) | Epidemiology | Alleviate symptoms of throat pain, nose blowing, itchy eyes and tears | 27, 31 and 39 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vivo | ddY mice | Inhibit IgE, IL-4 and IL-10 release | 23 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhibit histamine and LT release; inhibit cytokine production and secretion | Inhibit Lyn, Syk, and Bruton's tyrosine kinase | 93 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | KU812 cells | Reduce the expressions of α-chain and γ-chains of FcεRI | 18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associate lipid rafts to reduce FcεRI expression | Inhibit MRLC and ERK1/2 phosphorylation | 89–92 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Quercetin (0.2%–0.5%) | in vivo | BALB/c mice | Reduce IL-4 production; increase IFN-γ secretion | Reduce T-bet and GATA-3 expressions | 97 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Guinea pigs | Inhibit histamine, PLA2, and EPO productions; inhibit the recruitment of leukocytes | 52 and 53 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | HMC-1 cells | Reduces TNF-α, IL-1β, IL-6, and IL-8 levels | Inhibits NF-κB and MAPK activation | 51 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LAD2 cells | Reduces histamine, LT, PGD2, IL-6, IL-8 and TNF levels | Inhibits cytosolic calcium increase and NF-κB activation | 49 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HCM cells | Inhibits histamine, LT, PGD2, and granulocyte release | Inhibits Ca2+ influx and PKC activation | 47 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Caco-2 cells | Suppresses TNF-α production and IL-8 expression; reduce β-hexosaminidase level | 48 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kaempferol (0.16%–0.35%) | In vivo | BALB/c mice | Reduces IgE, histamine, IL-4, IL-32 and TSLP levels | Reduces MIP-2, ICAM-1 and COX-2 levels | 58 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Blunt eosinophil deposition and degranulation | Disturbs the NF-κB signaling pathway | 56 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduces IL-4, IL-5, and IL-13 levels | 55 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | Eol-1 cells | Reduces IL-32, IL-8 and caspase-1 levels | 56 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RBL-2H3 cells | Reduces anti-α-smooth muscle actin expression; reduce PGD2 and PGF2α levels | 57 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduces histamine and β-hexosaminidase release | Increases HO-1 expression | 60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Saponins (10%–19.57%) | In vivo | Guinea pigs | Inhibits LT C4 release | 68 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nc/Nga mice | Reduces IgE and TARC levels; reduce TARC, TNF-α, IFN-γ, IL-4, IL-5, and IL-13 expressions | Suppresses NF-κB and STAT-1; induce HO-1 expression | 69 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | RBL-2H3 cells | Inhibit β-hexosaminidase release | 61 and 71 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhibit β-hexosaminidase and histamine release; inhibit IL-4 and IL-6 expressions | Reduce the intracellular Ca2+ level; reduce the expression of α-chain of FcεRI | 73 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduce β-hexosaminidase and histamine release; reduce IL-4 and IFN-γ levels | Suppress Syk, Akt and MAP phosphorylation | 72 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Polysaccharides (0.4%–2.63%) | Epidemiology | Alleviate symptoms of sneezing, itchy nose, itchy eyes and watery eyes | 78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vivo | Sprague-Dawley rats | Decrease the sneezing and nasal rubbing rate; decrease the eotaxin expression | 79 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BALB/c mice | Reduce IL-4 and IL-13 levels; increase the TGF-β level | Suppress Th2 cell polarization; promote Treg cells; decrease GATA-3 expression; increase FOXP3 expression | 80 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduce IgE, histamine, mast cell protease-1 and IL-4 levels; increase IFN-γ, IL-10 and TGF-β levels | Promote Treg cells | 81 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduce histamine and IgE levels; reduce IL-4,IL-5 and IL-13 expressions; increase IFN-γ and IL-10 expressions | Inhibit the JNK and JAK2 signaling pathways | 99 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reduce IgE level; decrease IL-4 and IL-17A expressions | 83 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Increase galectin-9 expression | 84 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ICR mice | Reduce histamine, IgE and TNF-α levels | 98 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro | KU812 cells | Inhibit cell activation | Suppress the MAPK signaling pathway | 80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RBL-2H3 cells | Inhibit cell degranulation; reduce histamine, IL-4 and TNF-α levels | 80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cells from BALB/c mice | Increase IFN-γ production; enhance Th1 cell differentiation; reduce IL-4 and IgE levels | 100 and 101 |
Flavonoids can regulate master regulatory transcription factors for Th2 cytokines such as GATA-3, and signal transducer and activator of transcription 6 (STAT-6).105,106 Quercetin can reduce the eosinophil peroxidase activity and alter Th1/Th2 polarization via suppression of GATA-3 and increasing T-bet expression, and then decrease the IL-4 level and increase the IFN-γlevel.98 Kaempferol can suppress LPS-induced eotaxin-1 protein expression, which might be mediated likely via JAK2 signaling, and it can also attenuate the TNF-α induced expression of epithelial ICAM-1 and eosinophil integrin b2, and MCP-1 transcription encumbering eosinophil–epithelial cell interactions.56 Moreover, polysaccharides can suppress basophil cells via suppression of MAPK and decreasing eotaxin expression.81,82
IgE | Immunoglobulin E |
Th1 | T-helper type 1 cells |
Th2 | T-helper type 2 cells |
Th17 | T-helper type cells which produce IL-17A and IL-17F |
Treg | Regulatory T cells |
FcεRI | A receptor with Fc portion |
EGCG | Epigallocatechingallate |
ECG | Epicatechingallate |
EGC | Epigallocatechin |
EC | Epicatechin |
EGCG3′′Me | Epigallocatechin-3-O-(3-O-methyl) gallate |
EGCG4′′Me | Epigallocatechin-3-O-(4-O-methyl) gallate |
OVA | Ovalbumin |
IL | Interleukin |
AUC | Area under the drug concentration time curves |
Syk | Spleen tyrosine kinase |
PKC | Protein kinase C |
MAPK | p38 mitogen-activated protein kinase |
PG | Prostaglandin |
TNF | Tumor necrosis factor |
IFN | Interferon |
TSLP | Thymic stromal lymphopoietin |
HO | Hemeoxygenase |
LT | Leukotriene |
MCP | Chemoattractant protein |
ICR | Institute of cancer research |
PTK | Protein tyrosine kinases |
67LR | A cell-surface receptor named 67 kDa laminin receptor |
ERK1/2 | Extracellular signal-regulated kinase1/2 |
GA | Gallic acid |
FOXP3 | A member of forkhead/winged-helix |
STAT-1 | Signal transducer and activator of transcription 1 |
JNK | Jun N-terminal kinase |
JAK2 | Janus kinase 2 |
ICAM-1 | Intercellular cell adhesion molecule 1 |
MRLC | Myosin II regulatory light chain. |
Footnote |
† These authors contributed equally to this work. |
This journal is © The Royal Society of Chemistry 2021 |