Brandon
Yalin
a,
Andreas C.
Liapis
*b,
Matthew D.
Eisaman
c,
Dmytro
Nykypanchuk
b and
Chang-Yong
Nam
*b
aDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
bCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA. E-mail: andreas.liapis@gmail.com; cynam@bnl.gov
cDepartment of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794, USA
First published on 8th January 2021
Energy transfer (ET) from nanocrystals (NCs) has shown potential to enhance the optoelectronic performance of ultrathin semiconductor devices such as ultrathin Si solar cells, but the experimental identification of optimal device geometries for maximizing the performance enhancement is highly challenging due to a large parameter space. Here, we have demonstrated a general theoretical framework combining transfer matrix method (TMM) simulations and energy transfer (ET) calculations to reveal critical device design guidelines for developing an efficient, NC-based ET sensitization of ultrathin Si solar cells, which are otherwise infeasible to identify experimentally. The results uncover that the ET-driven NC sensitization is highly effective in enhancing the short circuit current (JSC) in sub-100 nm-thick Si layers, where, for example, the ET contribution can account for over 60% of the maximum achievable JSC in 10 nm-thick ultrathin Si. The study also reveals the limitation of the ET approach, which becomes ineffective for Si active layers thicker than 5 μm, being dominated by conventional optical coupling. The demonstrated simulation approach not only enables the development of efficient ultrathin Si solar cells but also should be applicable to precisely assessing and analyzing diverse experimental device geometries and configurations for developing new efficient ET-based ultrathin semiconductor optoelectronic devices.
We have previously studied the applicability of semiconductor nanocrystal (NC) sensitizers and their effects on photovoltaic device performance of ultrathin Si solar cells by incorporating CdSe–ZnS core–shell NCs atop a 500 nm thick ultrathin Si device layer.10 The experiment revealed a unique dual functionality of the NCs: Not only did they improve the optical coupling of incident light into the active ultrathin Si layer by acting as an anti-reflective coating, but they also improved light harvesting via direct energy transfer (ET) from the NCs into the Si layer through radiative and nonradiative ET processes, consistent to what has been originally proposed and identified by the Malko group in a series of reports.11,12 A similar ET-based NC sensitization scheme has been recently used to improve the light absorption in a Si-based photodetector,13 organic–inorganic hybrid perovskites,14 and various two-dimensional semiconductors.15–19
For these devices including ultrathin Si solar cells, further enhancement of device performances by NC sensitization may be possible by optimizing the device design parameters. For ultrathin Si solar cells, the key parameters would be those related with the device layer stack geometries, such as the thicknesses of the NC, spacer, and active Si layers, which control both ET efficiency and conventional optical coupling of light throughout the device stack in a complex manner. However, a full experimental optimization of these parameters is not feasible practically due to a large parameter space, and the ultimate performance enhancement of ultrathin Si solar cells achievable by the ET-based NC sensitization remains unknown. The same challenge would apply to other optoelectronic device systems that try to utilize ET schemes for improving devices' optical absorption and associated performances.
In this work, we have demonstrated a simulation approach combining the transfer matrix method (TMM) and ET-based dipole calculations to provide a general theoretical framework that can survey an extensive range of the parameter space for the layer geometry of NC-sensitized ultrathin Si solar cells and, ultimately, to identify optimized device geometries that maximize the performance enhancement achievable by the NC sensitization approach. The accuracy of this calculation approach has been successfully tested previously by experimentally obtained photovoltaic device performance data that showed an excellent matching with simulation results for a set of tested 500 nm-thick Si device geometries.10 In this study, the refined simulation scheme systematically surveyed a vastly extended device geometry parameter space, uncovering that the ET-based NC sensitization is highly effective in improving the light absorption in sub-μm-thick Si, wherein the ET can contribute to over 60% of the total short circuit current (JSC) output of 10 nm-thick ultrathin Si while also revealing the limitation of ET approach for improving the light absorption in Si active layers thicker than 5 μm, wherein a straightforward, conventional anti-reflective coating is effective for improving the light absorption.
Fig. 1 (a) NC-sensitized ultrathin Si structure modelled by TMM. (b) ET efficiencies for a single NC monolayer situated at a distance z above the layered dielectric system. |
The efficiencies of NRET and RET are calculated by comparing the ratio of the decay rate, Γ, of a randomly oriented dipole at a distance z above a layered dielectric system to its vacuum decay rate Γo. In our calculations, each NC monolayer in a given thickness of NC layer is represented as being above the ultrathin Si layer at a height z spaced by a chosen thickness of AlOx plus 1.7 nm thick native SiO2 on Si, and the resulting total electromagnetic decay rate is given by:11
Γ/Γo = 1 + l(0,∞), | (1) |
(2) |
Γ = Γvac + ΓAlOx,SiO2 + ΓRET + ΓNRET, | (3) |
Γvac/Γo = 1 + l(0,1), | (4) |
ΓAlOx,SiO2/Γo = l(1,1.5), | (5) |
ΓRET/Γo = l(1.5,nSi), | (6) |
ΓNRET/Γo = l(nSi,∞). | (7) |
ΓET = (ΓRET + ΓNRET)/Γ. | (8) |
Fig. 1b shows the dependence of NRET and RET to the distance between a single NC monolayer and the Si device layer. For distances greater than 5 nm, RET is the dominant factor contributing to the total ET efficiency. Notice that even at 120 nm separation, RET can allow the transfer of approximately 19% of the NC absorption. On the other hand, NRET quickly decreases (∝1/x3) and becomes negligible for distances greater than 20 nm.
To simulate the performance of NC-sensitized ultrathin Si solar cells, we employ the spatially resolved TMM which can describe the wave propagation through a sequence of homogenous media in one dimension. Specifically, the TMM is used to calculate the total light absorption within each device component layer in the device stack as a function of the layer depth for each wavelength. We note that each device component layer was treated as homogenous medium without intra-layer scattering. Particularly, for the NC sensitization layer of a given thickness that can contain multiple, stacked NC monolayers (each 8 nm thick; i.e., the diameter of a NC), this approximation is valid, considering that the inter-ET among individual NCs is less than 3.5%.10
In order to obtain the total energy that is transferred from the NC sensitization layer to the Si membrane via ET (AET), we summate the energy (light) absorbed by each NC monolayer (ANC) calculated by TMM, weighted by the average ET efficiency of the 8 nm interval given by eqn (8):
AET = ∑(ANC × ΓET). | (9) |
Then, the sum of AET with the total light absorbed in the Si layer via pure optical coupling (ASi) yields the final, total energy absorbed by the Si layer, Atotal = AET + ASi, in the given combination of component layer thicknesses. Note that ASi is in general higher than the energy absorbed by an equivalent Si solar cell in the absence of a sensitization layer, as the NC layer improves light coupling into the Si by acting as an antireflective coating. The ultimate short circuit current density (JSC) then can be estimated by integrating the wavelength-dependent absorption over the standard 1 sun (i.e., 100 mW cm−2) solar spectrum under the air mass 1.5 global condition (EAM1.5G):
(10) |
Using the modeling approach discussed above, we first examine the dependence of JSC of an ultrathin Si solar cell with a 500 nm thick active Si layer on the thicknesses of NC sensitization layer and AlOx spacer (Fig. 2). In our simulations, the thickness of the AlOx spacer is varied from 0 to 120 nm in 2 nm steps, while the NC sensitization layer is varied from 0 to 15 NC monolayers (i.e., thickness range of 0–120 nm in 8 nm steps). The total JSC for the Si device layer is then broken down into the contributions from the two pathways: Joptical, originating from ASi in eqn (10), represents the current originating from light absorbed by the Si device layer and includes anti-reflective effects, and JET originates from light absorbed by the NC layer, whose energy is then transferred both radiatively and non-radiatively to the Si active layer, such that JSC = Joptical + JET. In addition, the relative percentage enhancement in JSC due to the inclusion of the NC and AlOx layers compared with a bare solar cell is calculated for context.
As shown Fig. 2a, the 500 nm thick ultrathin Si exhibits a maximum JSC of 7.255 mA cm−2 when using a 72 nm thick NC layer (9 NC monolayers) without AlOx spacer. The survey features a large band in the parameter space that is within 3% of the maximum JSC, indicating a wide latitude for optimal thicknesses of component layers for enhancing photovoltaic efficiency. The maximum JSC of 7.255 mA cm−2 amounts to a 42.79% relative enhancement compared with the 500 nm thick ultrathin Si without employing the NC sensitization layer (Fig. 2b). It is noted that JSC of 7.255 mA cm−2 would represent ∼3.1% power conversion efficiency (PCE) assuming open circuit voltage (VOC) of 0.56 V and fill factor (FF) of 0.76, which have been demonstrated in 500 nm-thick microcrystalline Si solar cells.9 Out of the maximum JSC of 7.255 mA cm−2, the contribution of JET is 0.705 mA cm−2 (Fig. 2c), constituting 9.7% of the total JSC. Meanwhile, the maximum JET occurs when a 120 nm thick NC layer (i.e., 15 NC monolayers) is used, yielding JET of 0.949 mA cm−2. The simulation results also show that the maximum Joptical is 7.002 mA cm−2 when using 70 nm of AlOx spacer without NC sensitization (Fig. 2d). The local region of the maximum Joptical is far more pronounced than that of the case of JSC, but a band of optimal thickness combinations is still present, extending from 70 nm AlOx without NC layer (i.e., coordinate of (0, 70) in Fig. 2d) to 72 nm thick NC layer without AlOx spacer ((72, 0) in Fig. 2d), where Joptical decreases to 6.551 mA cm−2. We note that the optical coupling to the NC layer and, thus, JET are not evenly distributed throughout all the NC layer thickness surveyed, as evident by the ‘bowing’ that the contours follow in Fig. 2c; for the 16–80 nm thick NC layer (2–10 NC monolayers), JET initially increases with increasing AlOx spacer thickness on the interval from 0 nm to 40 nm. Overall, considering both ET and optical coupling, the results demonstrate that the bifunctional properties of NC sensitization narrowly outcompetes the standalone AlOx-only coating for enhancing the photovoltaic performance of 500 nm thick ultrathin Si.
Applying the modeling framework implemented above, we can expand our survey to various Si thicknesses in order to study the evolution of JSC. Devices with Si thicknesses of 10 nm, 100 nm, 1 μm, 5 μm, 10 μm, 25 μm, 50 μm, and 100 μm were simulated, and the resulting calculated maximum JSC for each Si thickness is summarized in Fig. 3a. For 10 nm-thick ultrathin Si, ET provides the main contribution to JSC as indicated by the characteristic maximum achievable at 120 nm NC layer thickness (15 NC monolayers) with zero AlOx spacer thickness (Fig. 3b) as well as the similar bowing as seen in the JET contour for 500 nm thick Si layer (Fig. 2c), except for the broadened range of values originating from the minor Joptical contribution. Compared with the Si layer without NC sensitization, JSC has increased by over three-fold from 0.44 mA cm−2 to 1.31 mA cm−2 of which ET accounted for over 60% of the total JSC (JET ∼ 0.8 mA cm2; Fig. 3a). The results highlight that the NC sensitization is highly effective for ultrathin Si with sub-100 nm thickness, which otherwise exhibits a limited direct light absorption. For the 100 nm thick Si, the maximum JSC is now increased to 3.12 mA cm−2 (Fig. 3c) at 72 nm NC layer thickness (9 monolayers). The reduced optimal NC layer thickness for maximizing JSC compared with 10 nm thick Si indicates an increasingly dominating contribution of Joptical over JET which now constitutes only ∼25% of total JSC (JET ∼ 0.79 mA cm2; Fig. 3a). When the Si layer thickness is increased to 1 μm, the maximum JSC increases to 10.21 mA cm−2 (Fig. 3d) with the enhancement by NC sensitization nearly entirely driven by an improved optical coupling as ET contributes only ∼7.4% of the total JSC (JET ∼ 0.76 mA cm2; Fig. 3a). Due to the diminishing ET contribution, the application of standalone AlOx layer without NC layer results in nearly equivalent JSC, and the JSC contour plot features a large, extended yellow band in which the NC-sensitized 1 μm-thick Si maintains a near maximum JSC over various combinations of thicknesses of NC layer and AlOx spacer (Fig. 3d).
For Si layers with thicknesses greater than 1 μm, the maximum JSC occurs when applying only AlOx spacer without NC sensitization layer and, thus, with no contribution from ET (Fig. 3a); as the Si layer thickness increases further from 5 μm to 100 μm, a standalone AlOx layer provides the greatest enhancement in JSC, reaching the maximum of 22.84 mA cm−2 for the 10 μm thick Si layer and 28.9 mA cm−2 for the 100 μm thick Si. If a NC layer is applied, JSC rather decreases as shown in Fig. 3e for the example of 5 μm-thick Si, which features an extended yellow band similar to 1 μm Si but now with the maximum being located at zero NC layer thickness.
We note that the overall JSC of the solar cell presented so far can be increased significantly if the bottom surface of Si active layer in the device structure utilizes better light management schemes, such as the reflective metallic back contact used in interdigitated back contact solar cells, instead of the SOI structure considered in the current study. We confirm the notion by extending the modeling to determine the maximum JSC and its JET contribution for the Si thicknesses of 10, 100, and 500 nm with a metallic back contact with unity reflectivity (without diffuse scattering); as shown in Fig. 3f (also Fig. S1 in ESI†), the results indeed show superior maximum JSC as well as enhanced JET contribution compared with the counterpart without the reflective back contact. For example, a 500 nm-thick Si with a metallic back contact can output ∼10 mA cm−2 as opposed to ∼7.3 mA cm−2 without the back contact discussed earlier. Furthermore, for the 10 nm-thick Si with a back contact, JET now contributes ∼80% to the maximum JSC, being improved from ∼60% contribution without a back contact.
Footnote |
† Electronic supplementary information (ESI) available: Calculated contour plots of JSC and contributions of Joptical and JET for NC-sensitized ultrathin Si with metallic back contact with 100% reflectivity for Si thicknesses of: 10 nm; 100 nm, and 500 nm. See DOI: 10.1039/d0na00835d |
This journal is © The Royal Society of Chemistry 2021 |