Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures
Abstract
Metal halide perovskites, as newly emerging light emitters, have been attracting considerable attention on luminescent materials and devices, due to their superior optoelectronic properties and potential practical applications. Recently, perovskite light-emitting diodes (PeLEDs) based on lead halide perovskites (LHPs) have been largely designed and intensively studied in laboratory platforms. However, to satisfy demand and promote their commercialization, it is crucial to improve the efficiency and stability of PeLEDs. Accordingly, the surface-plasmon (SP) effect provides a promising approach to enhance their luminescence, which is realized by incorporating plasmonic metal nanostructures (NSs) into PeLEDs. This review presents a comprehensive overview of the research status and prospect on LHP-based plasmonic PeLEDs together with the corresponding perovskite light-emission films (PeLEFs). Firstly, the recent development of the PeLEDs is briefly introduced. Secondly, the mechanisms and photophysics of the PeLEDs by SP manipulation are simply illustrated and analyzed. Then, the recent progress and achievements on the theoretical and experimental results of SP effect applications in the PeLEDs together with PeLEFs are presented in detail and systematically reviewed. Next, the current challenges and future directions of the PeLEDs are shown and discussed. Finally, a critical summary and outlook of the PeLEDs are summarized and proposed. Our results indicate that this new class of LHP-based plasmonic PeLEDs presents future research fields and demonstrates promising applications in lighting and displays, and further luminescence enhancement in exciton radiation processes and light extraction techniques are a hopeful route to obtain high-performance PeLEDs.
- This article is part of the themed collection: Recent Review Articles