Issue 2, 2021

The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction

Abstract

Although intensive efforts have been made and great progress has been achieved relating to the electrocatalytic hydrogen evolution reaction (HER), an advanced synthesis strategy for an efficient electrocatalyst is still the most significant goal. In this paper, we introduce PdFeCoNiCu high-entropy alloy (HEA) nanoparticles as an efficient electrocatalyst for the HER, which has been prepared in an oil phase under facile conditions for the first time. PdFeCoNiCu/C shows excellent alkaline HER catalytic performance with an overpotential of only 18 mV and a Tafel slope of 39 mV dec−1. Meanwhile, we achieved the highest mass activity (6.51 A mgPd−1 at −0.07 V vs. RHE) in the alkaline HER among all non-Pt electrocatalysts. PdFeCoNiCu/C also shows surprisingly stable catalytic properties for over 15 days without notable decay. Based on theoretical calculations, the HEA surface demonstrates the optimization of electronic structures based on a synergistic effect between all metals. Pd and Co are confirmed to be the dominant electroactive sites for both H2 formation and initial water splitting, which are assisted by Ni, Fe, and Cu promotion, enhancing electron transfer and optimizing the binding energies of hydrogen intermediates. This work has supplied significant insight into the design of an efficient electrocatalyst based on HEA materials.

Graphical abstract: The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction

Supplementary files

Article information

Article type
Communication
Submitted
30 Oct 2020
Accepted
08 Dec 2020
First published
10 Dec 2020

J. Mater. Chem. A, 2021,9, 889-893

The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction

D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen, T. Zhan, S. Li, B. Yang, M. Sun, J. Lai, B. Huang and L. Wang, J. Mater. Chem. A, 2021, 9, 889 DOI: 10.1039/D0TA10574K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements