Issue 23, 2022

Pulmonary delivery of curcumin-loaded glycyrrhizic acid nanoparticles for anti-inflammatory therapy

Abstract

Acute lung injury (ALI) is an inflammatory disease of the lungs. Curcumin (Cur) shows protective effects in ALI animal models. However, Cur is a hydrophobic drug and its administration into the lungs is inefficient due to its low bioavailability. In this study, glycyrrhizic acid (GA) micelles were produced and evaluated as a carrier of Cur for treatment of ALI. Cur-loaded GA (GA-Cur) nanoparticles were produced using an oil-in-water emulsion/solvent evaporation method. The size and surface charge of the GA-Cur nanoparticles were 159 nm and −23 mV, respectively. In lipopolysaccharide-activated RAW264.7 cells, the GA-Cur nanoparticles decreased the pro-inflammatory cytokine levels more efficiently than GA, Cur, or a simple mixture of GA and Cur (GA + Cur). This suggests that the GA-Cur nanoparticles improved the therapeutic efficiency by enhanced delivery of GA and Cur. GA-Cur inhibited the nuclear translocation of nuclear factor-κb and induced endogenous heme oxygenase-1 more efficiently than the other treatments. Furthermore, an in vitro toxicity test showed that GA-Cur had little cytotoxicity. In vivo therapeutic effects of GA-Cur were evaluated in ALI mouse models. GA-Cur was administered into the animals by intratracheal instillation. The results showed that GA-Cur reduced pro-inflammatory cytokines in a dose-dependent manner and did so more efficiently than GA, Cur, or GA + Cur. Furthermore, the hemolysis and infiltration of monocytes into the lungs were more effectively inhibited by GA-Cur than the other treatments. The data indicate that GA is an efficient carrier of Cur and an anti-inflammatory drug. Owing to their delivery efficiency and safety, GA-Cur nanoparticles will be useful for treatment of ALI.

Graphical abstract: Pulmonary delivery of curcumin-loaded glycyrrhizic acid nanoparticles for anti-inflammatory therapy

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2022
Accepted
09 Sep 2022
First published
07 Oct 2022

Biomater. Sci., 2022,10, 6698-6706

Pulmonary delivery of curcumin-loaded glycyrrhizic acid nanoparticles for anti-inflammatory therapy

C. Piao, C. Zhuang, M. Kang, J. Oh and M. Lee, Biomater. Sci., 2022, 10, 6698 DOI: 10.1039/D2BM00756H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements