Nitrile regio-synthesis by Ni centers on a siliceous surface: implications in prebiotic chemistry†
Abstract
By means of quantum chemistry (PBE0/def2-TZVPP; DLPNO-CCSD(T)/cc-pVTZ) and small, but reliable models of Polyhedral Oligomeric Silsesquioxanes (POSS), an array of astrochemically-relevant catalysis products, related to prebiotic and origin of life chemistry, has been theoretically explored. In this work, the heterogeneous phase hydrocyanation reaction of an unsaturated CC bond (propene) catalyzed by a Ni center complexed to a silica surface is analyzed. Of the two possible regioisomers, the branched iso-propyl-cyanide is thermodynamically and kinetically preferred over the linear n-propyl-cyanide (T = 200 K). The formation of nitriles based on a regioselective process has profound implications on prebiotic and origin of life chemistry, as well as deep connections to terrestrial surface chemistry and geochemistry.