Superconductivity and topologically nontrivial states in noncentrosymmetric XVSe2 (X = Pb, Sn): a first-principles study†
Abstract
Noncentrosymmetric superconductors are strong candidates for exploring intrinsic topological superconductivity. Here, we predict two new noncentrosymmetric superconductors SnVSe2 and PbVSe2 by a systematic first-principles study. These two compounds show good thermal and dynamic stabilities. Moreover, the band topology of both compounds is predicted to be nontrivial via Z2 calculation and slab models. We also investigate the electron–phonon interactions in SnVSe2 and PbVSe2, indicating the Tc of SnVSe2 and PbVSe2 without external pressure are predicted to be ∼1.18 K and ∼0.22 K, respectively. Furthermore, the results on pressure engineering in PbVSe2 imply that the Tc of PbVSe2 can be tuned to 2.39 K for enhanced contributions from Pb layers under pressure up to 6.4 GPa. This work may provide new platforms for probing spin-triplet paring and may help with designing and developing new metal-intercalated transition metal dichalcogenides.