Issue 42, 2022

Extensively amino-functionalized graphene captures carbon dioxide

Abstract

The development of robust carbon dioxide (CO2) scavengers is a challenging but paramount problem of modern humanity. In the present work, we report a prospective CO2 sorbent based on amino-functionalized graphene (FG). Amino-FG retains the favorable physicochemical properties of graphene and acquires the capability of chemically fixing CO2via the carbamic acid formation mechanism. In the present work, we comprehensively investigate CO2 capturing prospects by extensively amino-FG using hybrid density functional theory. We show that up to six amino groups can be grafted, remain stable, and subsequently chemisorb CO2 per benzene ring. Two functional groups above the benzene ring and four such groups below the benzene ring represent a thermodynamically stable molecular configuration in which the number of carbon atoms is equal to the number of functional groups. The thermochemistry of chemisorption is, in general, negatively impacted by the increase in the density of functional groups. However, a less favorable Gibbs free energy is compensated by a several fold higher number of prospective reaction sites. The thermochemistry results are rationalized by considering steric hindrances on the surface of graphene in the context of the states of hybridization and genuine geometries of the amino- and carboxamido functional groups. The functionalization and chemisorption decrease the hydrophobicity of graphene derivatives and, therefore, foster the development of novel and more robust chemical engineering setups.

Graphical abstract: Extensively amino-functionalized graphene captures carbon dioxide

Article information

Article type
Paper
Submitted
14 Jul 2022
Accepted
06 Oct 2022
First published
07 Oct 2022

Phys. Chem. Chem. Phys., 2022,24, 25801-25815

Extensively amino-functionalized graphene captures carbon dioxide

V. V. Chaban and N. A. Andreeva, Phys. Chem. Chem. Phys., 2022, 24, 25801 DOI: 10.1039/D2CP03235J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements