Self-association and gel formation during sedimentation of like-charged colloids†
Abstract
Formation of superstructures from colloidal dispersion involves a continuous increase in particle concentration, resulting in increasingly more complicated interparticle interaction. At high particle concentration, the presence of the super-crowding effect, strong non-ideality in addition to significant light absorption and scattering makes particle analysis very difficult. Here we report quantitative molecular, microscopic and macroscopic experimental results on like-charged colloids with concentration up to 60 vol%, close to the densest possible packing of spheres. It is achieved by conducting sedimentation–diffusion-equilibrium analytical ultracentrifugation (SE-AUC) on a concentrated dispersion of colloidal silica nanoparticles in a refractive-index-matching solvent. Surprisingly, we observed the self-association and even colloidal gel formation of like-charged colloids at very high concentration. Further experiments indicate that the attraction force may be counter-ion mediated. These results represent an important step forward in understanding complicated interparticle interaction in extremely high concentration, which is vital for the controlled fabrication of colloidal superstructures.