Gas-phase grafting for the multifunctional surface modification of silicon quantum dots†
Abstract
Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.