Nanoplatform-mediated calcium overload for cancer therapy
Abstract
Mitochondria, as the “the power plants” of cells, have been extensively studied because of their biological functions of providing energy and participating in signaling pathways. In parallel, calcium (Ca2+) plays a vital role in the homeostasis balance and function coordination of mitochondria, especially in cancer cells which metabolize frequently to maintain their growth. On this basis, Ca2+ overload has been an efficient, yet safe theranostic model for cancer therapy, by activating mitochondrial apoptosis pathways to achieve cancer suppression. However, the integration of functional units mediating Ca2+ overload into the nanoplatform remains a difficult but significant task. This review aims to highlight meaningful designs of nanoplatforms for Ca2+ overload, including monotherapy and combination therapy. In addition, perspectives on further development of Ca2+ overload are provided, mainly emphasizing scientific restrictions and future exploitation directions.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles