Issue 2, 2023

A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection

Abstract

Herein, we report the construction of a programmable catalytic molecular nanomachine based on a cross-linked catalytic hairpin assembly (CCHA) reaction for the one-step highly sensitive detection of proteins and small molecules. In this system, when the recognition elements attached on split initiators bind to the target proteins, it can trigger the cascade of the CCHA reaction, resulting in the formation of many macromolecular fluorescent products for signaling. This platform couples the advantages of highly efficient DNA-based nanotechnology with specific protein-small molecule interactions. We demonstrated the sensitive detection of streptavidin and anti-digoxigenin antibody with detection limits as low as 48.8 pM and 0.85 nM, respectively. This nanomachine also demonstrated its flexibility in the nanomolar detection of corresponding small molecules, such as biotin and digoxigenin, using a competitive method. In addition, the nanomachine was robust enough to perform well with human serum samples. Overall, this programmable catalytic molecular nanomachine provides a versatile platform for the detection of proteins and small molecules by replacing the recognition elements, which can promote the development of DNA nanotechnology in disease diagnosis and therapeutic drug monitoring.

Graphical abstract: A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2022
Accepted
25 Nov 2022
First published
29 Nov 2022

Analyst, 2023,148, 328-336

A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection

N. Li, M. Li and M. Li, Analyst, 2023, 148, 328 DOI: 10.1039/D2AN01798A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements