Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP†
Abstract
Cell-imprinted polymers (CIPs) for yeasts were fabricated via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP) on the surface of a glassy carbon electrode (GCE) which had been modified with gold nanoparticles (AuNPs)/MXene (Ti3C2Tx) composites. Here, the AuNPs/Ti3C2Tx composites form a macroporous structure, which could improve the electron transfer rate of the materials and facilitate the leaving or rebinding of cells. Methacrylic acid (MAA) and N,N′-methylene bis-acrylamide (MBA) were selected as the functional monomer and cross-linker of CIPs, because they could form efficient hydrogen bonding with mannan from yeast cell walls. The obtained electrode (CIPs/AuNPs/Ti3C2Tx/GCE) was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Further experiments indicated that the CIPs/AuNPs/Ti3C2Tx/GCE electrode could be utilized as an electrochemical biosensor to determine yeast cells by differential pulse voltammetry (DPV). The linear response range was 1.0 × 102 to 1.0 × 109 cells per mL and the detection limit was 20 cells per mL (S/N = 3). The CIPs/AuNPs/Ti3C2Tx/GCE electrode also showed good selectivity, repeatability, reproducibility, and regeneration. Finally, the proposed sensor was used to detect yeast cells in commercial samples of Saccharomyces boulardii sachets by a standard addition method. The obtained recovery was from 96.9 to 104.8% showing its potential applications in clinical and diagnostic research.
- This article is part of the themed collection: Analyst HOT Articles 2023