ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells†
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.