The synthesis of single-atom catalysts for heterogeneous catalysis
Abstract
Heterogeneous catalysis is an important class of reactions in industrial production, especially in green chemical synthesis, and environmental and organic catalysis. Single-atom catalysts (SACs) have emerged as promising candidates for heterogeneous catalysis, due to their outstanding catalytic activity, high selectivity, and maximum atomic utilization efficiency. The high specific surface energy of SACs, however, results in the migration and aggregation of isolated atoms under typical reaction conditions. The controllable preparation of highly efficient and stable SACs has been a serious challenge for applications. Herein, we summarize the recent progress in the precise synthesis of SACs and their different heterogeneous catalyses, especially involving the oxidation and reduction reactions of small organic molecules. At the end of this review, we also introduce the challenges confronted by single-atom materials in heterogeneous catalysis. This review aims to promote the generation of novel high-efficiency SACs by providing an in-depth and comprehensive understanding of the current development in this research field.