Issue 8, 2023

Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy

Abstract

Surface plasmon resonance (SPR) has the ability to drive catalytic conversion of the reactant molecules via the production of hot electrons, which in general requires high activation energy. The reactions driven by these hot electrons are critical and essential in various heterogeneous surface catalytic reactions. However, there is a need to understand the dynamics of surface reactions and the underlying mechanism, which are influenced by several factors such as the constitution of the nanoparticle, exposure time, and reaction conditions to name a few. However, the effect of solvent in stabilizing the electron–hole pair, the orientation, and the surface coverage of the analyte are poorly understood due to the limitations of current methods. To get deeper insights into the reaction dynamics, we have demonstrated the combined utility of plasmon-enhanced Raman spectroscopy and Two-dimensional correlation spectroscopy (2DCOS) to study the plasmon-driven conversion of 4-nitrothiophenol on the surface of plasmonic nanoparticles. Interestingly, this combined technique provided us with previously unobservable results regarding surface catalysis by conventional spectroscopic analysis alone. Specifically, for the first time, 2DCOS provided critical insights in bridging the gap in our understanding of the interplay of solvent effect, orientation, and surface packing of the analyte molecules. It was observed that certain species like 4,4-dimercaptoazobenzene (DMAB) or 4-aminothiophenol (4-ATP) can be selectively formed based on the ordered or disordered phases of the analytes on the surface, thus paving the way to precisely control light-driven reactions through operando spectroscopy.

Graphical abstract: Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2022
Accepted
03 Feb 2023
First published
06 Feb 2023

Phys. Chem. Chem. Phys., 2023,25, 6032-6043

Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy

R. Singh, V. Yadav and S. Siddhanta, Phys. Chem. Chem. Phys., 2023, 25, 6032 DOI: 10.1039/D2CP05705K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements