Clarifying the effects of nanoscale porosity of silicon on the bandgap and alignment: a combined molecular dynamics–density functional tight binding computational study†
Abstract
Porous silicon (pSi) has been studied for its applications in solar cells, in particular in silicon–silicon tandem solar cells. It is commonly believed that porosity leads to an expansion of the bandgap due to nano-confinement. Direct confirmation of this proposition has been elusive, as experimental band edge quantification is subject to uncertainties and effects of impurities, while electronic structure calculations on relevant length scales are still outstanding. Passivation of pSi is another factor affecting the band structure. We present a combined force field–density functional tight binding study of the effects of porosity of silicon on its band structure. We thus perform electron structure-level calculations for the first time on length scales (several nm) that are relevant to real pSi, and consider multiple nanoscale geometries (pores, pillars, and craters) with key geometrical features and sizes of real porous Si. We consider the presence of a bulk-like base with a nanostructured top layer. We show that the bandgap expansion is not correlated with the pore size but with the size of the Si framework. Significant band expansion would require features of silicon (as opposed to pore sizes) to be as small as 1 nm, while the nanosizing of pores does not induce gap expansion. We observe a graded junction-like behavior of the band gap as a function of Si feature sizes as one moves from the bulk-like base to the nanoporous top layer.