Pressure induced weakness of electrostatic interaction and solid decomposition in Cs−I compounds
Abstract
This work utilized first-principles calculations and the CALYPSO structure search technique to systematically investigate the crystal structure stability of CsxIy compounds under high pressures ranging from 0 to 500 GPa. Several new phases with both conventional and unconventional stoichiometries were predicted. Interestingly, we discovered a counter-intuitive phenomenon where Cs−I compounds decompose into Cs and I elemental solids under pressure. To understand the physical mechanism behind this pressure-induced decomposition, we examine the phenomenon from two distinct perspectives: enthalpy of formation and interatomic interactions. Our results suggest that the main cause is the weakening of electrostatic interactions leading to the decomposition, while the weak covalent interaction plays a minor role. From an energy perspective, the decrease in the formation of enthalpy (ΔH) is primarily due to a reduction in the difference of internal energy (ΔU). These findings provide valuable insights into the decomposition mechanism and high-pressure properties of alkali metal halides. The counterintuitive phenomenon of high-pressure charge transfer and decomposition may inspire new ideas and perspectives in the fields of geology and the study of alkali metal halides under extreme conditions.
- This article is part of the themed collection: 2023 PCCP HOT Articles