Issue 8, 2023

Polyoxometalate-immobilized carbon nanotube constructs triggered by host–guest assembly result in excellent electromagnetic interference shielding

Abstract

In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 μm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host–guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host–guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2–12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.

Graphical abstract: Polyoxometalate-immobilized carbon nanotube constructs triggered by host–guest assembly result in excellent electromagnetic interference shielding

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2022
Accepted
08 Jan 2023
First published
10 Jan 2023

Nanoscale, 2023,15, 3805-3822

Polyoxometalate-immobilized carbon nanotube constructs triggered by host–guest assembly result in excellent electromagnetic interference shielding

A. Malakar, S. Mandal, R. Sen Gupta, S. S. Islam, K. Manna and S. Bose, Nanoscale, 2023, 15, 3805 DOI: 10.1039/D2NR05428K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements