Issue 3, 2023

Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts

Abstract

Although molybdenum phosphide (MoP) has attracted increasing attention as an electrocatalyst in the hydrogen evolution reaction (HER), it is still worth exploring an effective approach to further improve the HER activities of MoP. To date, the generation and effect of P vacancies (Pv) on MoP have been rarely investigated for the HER in both alkaline and acidic media and remain unclear. Here, MoP rich in P vacancies (MoP-Pv) was prepared by hydrogen reduction to improve the HER catalytic performances. As a result, the overpotentials of MoP-Pv were 70 mV and 62 mV lower than those of pristine MoP in 1 M KOH and 0.5 M H2SO4 electrolytes, respectively. What's more, the TOFs of MoP-Pv were 3.14 s−1 and 1.19 s−1 at an overpotential of 200 mV in 1 M KOH and 0.5 M H2SO4, respectively, which are 4.1-fold and 2.5-fold higher than those of pristine MoP. Even when compared with other corresponding catalysts, the TOFs of MoP-Pv still ranked at the top. Due to the surface P vacancies, MoP-Pv possesses more electrochemically active sites and faster charge transfer capability, which all favor higher HER catalytic activities. Overall, our work validates a straightforward and vigorous strategy for improving the intrinsic HER catalytic activities of P vacancies, and also provides guidance for the development of vacancy engineering in electrocatalysts.

Graphical abstract: Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2022
Accepted
09 Dec 2022
First published
09 Dec 2022

Nanoscale, 2023,15, 1357-1364

Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts

H. Ma, W. Yan, Y. Yu, L. Deng, Z. Hong, L. Song and L. Li, Nanoscale, 2023, 15, 1357 DOI: 10.1039/D2NR05964A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements