Issue 24, 2023

Unlocking the catalytic potential of nickel sulfide for sugar electrolysis: green hydrogen generation from kitchen feedstock

Abstract

Amongst the various food ingredients available in our kitchen, table sugar is commonly associated with satisfying our sweet cravings and serving as a fundamental source of energy in the form of glucose for powering cellular activities and various biological processes. Interestingly, sugar can be electrolyzed in an aqueous solution, oxidizing into value-added chemicals at the anode while producing hydrogen at the cathode. However, developing cost-effective and highly active electrocatalysts for sugar and/or glucose electrolysis remains a significant challenge. This work presents solution-processed nickel sulfide nanowires on a nickel foam substrate (Ni7S6/NF) as a promising electrocatalyst for the glucose oxidation reaction (GOR), achieving electrolysis currents of 10, 100, and 400 mA cm−2 at anodic potentials of 1.30, 1.41 and 1.45 V vs. RHE, respectively. These anodic potentials, compared to the conventional OER potentials, are lowered by 140, 190 and 230 mV, respectively. Additionally, table sugar and orange juice are also electrolyzed to realize competitive hydrogen generation. By assembling a two-electrode (Ni7S6/NF∥Ni7S6/NF)-based electrolyzer and feeding table sugar as the key electrolyte in 1.0 M KOH aqueous solution, a remarkable result exhibiting a cell voltage lowered by 170 mV compared to that required for conventional alkaline water (1.0 M KOH aqueous solution) splitting to achieve an electrolysis current density of 100 mA cm−2 is obtained. In addition, the Ni7S6/NF catalyst exhibits outstanding stability for 24 h during sugar electrolysis.

Graphical abstract: Unlocking the catalytic potential of nickel sulfide for sugar electrolysis: green hydrogen generation from kitchen feedstock

Supplementary files

Article information

Article type
Research Article
Submitted
23 Aug 2023
Accepted
21 Sep 2023
First published
10 Oct 2023

Inorg. Chem. Front., 2023,10, 7204-7211

Unlocking the catalytic potential of nickel sulfide for sugar electrolysis: green hydrogen generation from kitchen feedstock

S. A. Patil, A. C. Khot, K. D. Kadam, H. T. Bui, H. Im and N. K. Shrestha, Inorg. Chem. Front., 2023, 10, 7204 DOI: 10.1039/D3QI01686B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements