A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration†
Abstract
Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone. The bi-layer scaffolds were subsequently modified with tannic acid (TA) prime-coating and E7 peptide conjugation (PCL/HA-GelMA/KGN@TA/E7) to regulate endogenous stem cell behaviors and exert antioxidant activity for enhanced osteochondral regeneration. In vitro, the scaffolds could support cell attachment and proliferation, and enhance the chondrogenic and osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BMSCs) in a specific layer. Besides, the incorporation of TA/E7 significantly increased the biological activity of the bi-layer scaffolds including the pro-migratory effect, antioxidant activity, and the maintenance of cell viability against oxidative stress. In vivo, the developed bi-layer scaffolds enhanced the simultaneous regeneration of cartilage and subchondral bone when implanted into a rabbit OCD model through macroscopic, micro-CT, and histological evaluation. Taken together, these investigations demonstrated that the 3D multifunctional bi-layer scaffolds could provide a suitable microenvironment for endogenous stem cells, and promote in situ osteochondral regeneration, showing great potential for the clinical treatment of OCD.