Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS

Marlos Eduardo Zorzella Fontana a, Rosselei Caiel da Silva a, Ingrid Duarte dos Santos ab, Júlia Paula Neu a, Robson Dias Wouters a, Paola Jennifer Babinski a, Jessica Fernanda Hoffmann c, Rochele Cassanta Rossi c, Liliana Essi d and Ionara Regina Pizzutti *a
aUFSM – Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil. E-mail: ionara.pizzutti@ceparc.com.br; Tel: +55 55 3220 9458
bUFSM – Federal University of Santa Maria, Food Science and Technology Department, 97105-900, Santa Maria/RS, Brazil
cUNISINOS – University of Vale do Rio dos Sinos, Health School – Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
dUFSM – Federal University of Santa Maria, Biology Department, 97105-900, Santa Maria/RS, Brazil

Received 2nd April 2024 , Accepted 26th June 2024

First published on 27th June 2024


Abstract

The use of medicinal herbs has increased significantly. However, the presence of pesticide residues and mycotoxins in medicinal herbs has generated constant discussion and concern among regulatory agencies. Developing and validating an analytical method for determining pesticides and mycotoxins in medicinal plants is challenging due to the naturally occurring substances in these plants. The purpose of this work was to develop and to optimize a sensitive, accurate, precise, effective QuEChERS method for simultaneous determination of over 160 pesticide and mycotoxin residues in complex medicinal plant matrices using LC-TQ-MS/MS. A comprehensive comparison of clean-up procedures and other parameters was conducted to achieve this goal. The validation procedure was performed according to SANTE 11312/2021. More polar analytes, such as acephate, methamidophos and omethoate, presented a higher negative matrix effect in both Melissa officinalis L. and Malva sylvestris L. However, other molecules, such as spirodiclofen, showed a 24% signal enhancement in M. officinalis and a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. Accuracy and precision were satisfactory according to SANTE 11312/2021 for 157 pesticide residues and mycotoxins in M. officinalis and for 152 molecules in M. sylvestris. LOQs at 10 µg kg−1 were achieved for 117 pesticides in M. officinalis and 99 pesticides in M. sylvestris. Among the mycotoxins, all four aflatoxins (B1, B2, G1 and G2) presented LOQs of 5 µg kg−1, and ochratoxin A had an LOQ of 10 µg kg−1 in M. officinalis. The same LOQ values were shown for these mycotoxins in M. sylvestris, except for aflatoxin B2 and ochratoxin A, which had LOQs of 20 µg kg−1. Moreover, in Southern Brazil, there has been no previous study on mycotoxin and pesticide contamination in medicinal herbs. Therefore, the application of this method was assessed through the analysis of forty-two real samples. Imidacloprid was found in M. officinalis, and methyl pirimiphos was found in M. sylvestris. The proposed method not only serves as a helpful tool for routine monitoring but also offers a basis for further research on risk assessment and control in food safety.


Introduction

Brazil is one of the most biodiverse countries in the world, with plant species which have been widely used by the population for medicinal purposes as well as providing material for research into the search for new drugs against different diseases.1 During recent years, the consumption of natural resources has gained notoriety for its increase along with national policies related to traditional and complementary medicine. Medicinal plants have been an essential part of ancient healthcare practices and have become a valuable resource in the treatment of illnesses and pathologies.2

Melissa officinalis L., popularly known as lemon balm, is an edible and medicinal plant belonging to the Lamiaceae. It has been traditionally used as a sedative, analgesic, and hypnotic,3 and with its antioxidant effects being beneficial to the brain, as a treatment for memory disorders and Alzheimers.4,5

Another plant that presents therapeutic properties is Malva sylvestris L., known as high mallow, which is another important medicinal plant and has been considered a good candidate for drug discovery.6 Currently distributed worldwide, M. sylvestris presents anti-inflammatory properties mainly due to the presence of some flavonoids and mucilage. M. sylvestris has been used to treat many diseases, such as gingivitis, toothache, abdominal pain, gastrointestinal disorders, and diarrhea. In addition, its flowers are recommended for acne, the treatment of eczema, and inflammatory diseases.7

The growing demand for medicinal plants requires an increase in production and thus, it is necessary to protect them from pests, increase their production and shelf life whilst reducing post-harvest and storage losses. Therefore, like other plants, medicinal herbs can not only be exposed to pesticides during agricultural practices but also contaminated by mycotoxins during processing and storage.8,9

According to Sedova,10 mycotoxins, pesticide residues, and toxic heavy metals are the most common chemical pollutants found in tea and medicinal herbs during production, storage, and consumption. Through eating polluted foods, chemical pollutants may cause significant health issues, such as carcinogenesis, immunosuppression, teratogenicity, as well as hepatotoxic, genotoxic, and nephrotoxic effects11,12 and result in huge commercial losses. For these reasons, the quality and safety of medicinal plants are of big concern13 and specific legislation for these matrices need to be created in order to control contamination by pesticide residues and mycotoxins. Since 2018, Brazilian legislation recommends the determination of pesticides according to RDC n° 105/2016 (ref. 14) and mycotoxins on herbal products, in all registration requests and post-registration petitions.

Several analytical methods can be used to identify and quantify this large variety of chemical compounds.15 In an effort to reduce the number of methods needed to perform a complete chemical analysis, recent trends have focused on the development of multi-residue16,17 and multi-class methods.18–20 Development of improved methods for multi-mycotoxin and multi-pesticide analysis, including sample preparation and extraction and detection parameters, has become an increasingly large research field due to co-occurrence processes while still responding to the wide range of physicochemical properties and low residue levels found in different matrices.21 These analyses are difficult since the analytes have varied properties and polarity. As a result, selecting the best extraction process can be difficult.13,22

Different methods for multi-compound analysis have been proposed for the analysis of mycotoxins and pesticides, in which ultra-performance liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS/MS) has become the technique of choice for the analysis of a wide range of contaminants in food. It allows the simultaneous determination and accurate quantification of several analytes at very low concentrations in complex matrices in a short chromatographic run time.23,24 It is important to have effective and reliable analytical methods for the determination of mycotoxins and pesticides at the legislated levels in representative samples, not only to perform accurate risk assessments, but also to enforce the regulatory limits established worldwide.21

A QuEChERS (quick, easy, cheap, effective, rugged and safe) method originally used just for pesticide residue analysis in vegetables and fruits16,17,25 has been further modified for pesticide determination in several matrices. Currently, this method is quickly becoming one of the most popular dispersive solid-phase extraction (d-SPE) methods in food safety.26 Parameters such as time, solvent consumption, simplicity, selectivity, and sensitivity are crucial when considering an appropriate extraction/clean-up strategy.21 According to recent investigations, different types of adsorbents, such as primary secondary amines (PSA), octadecyl (C18), and graphitized carbon black (GCB) have been used based on their physical and chemical properties.27,28

However, while many analytical methods have been reported for the determination of pesticides and mycotoxins in different foodstuffs,29,30 there is a lack of a simple and generic method for the simultaneous determination of such residues in medicinal plants due to matrices complexity as well as the diversity of species. Due to low water content, natural pigments, essential oils, and a high number of undesired components such as sugars, phenolics, and flavonoids, medicinal plants present more complicated interference when compared with other matrices, like fruits and vegetables.31 In addition, different species and parts of plants can affect analyte responses, making the development of analytical procedures a challenging task. Thus, it is necessary to develop a general multiclass-residue method to monitor different kinds of residues in medicinal plants, such as M. officinalis and M. sylvestris.

So far, there are no representative matrices for different medicinal parts and families, indicating that it is necessary to validate each medicinal plant separately. Additionally, even employing LC-MS/MS techniques for quantification, the present work is very significant considering that it is necessary to apply sample preparation for two distinct complex matrices whilst being able to minimize interference effects in addition to extracting with acceptable accuracy and precision the distinct classes of compounds (pesticides and mycotoxins).

The purpose of this work was to develop and optimize a sensitive, precise, effective QuEChERS method for the analysis of over 160 compounds in medicinal plant matrices by LC-MS/MS. As far as we know, the present study is the first method for simultaneous analysis of pesticides and mycotoxins in complex matrices such as M. sylvestris (flowers) and M. officinalis (leaves). In this matter, a comprehensive comparison of clean-up procedure efficiencies and other parameters were evaluated to achieve this goal. To ensure the adequate analysis of the selected mycotoxins and pesticides in medicinal plant samples, a validation process was ultimately performed for the most efficient extraction procedure. Moreover, in South Brazil, there has been no study on mycotoxin and pesticide contamination in medicinal herbs and an application of the method was assessed through the analysis of forty-two real samples. The proposed method not only works as a helpful tool for routine and surveillance monitoring but also offers a basis for further research on risk assessment and control in food safety.

Experimental

Chemicals and reagents

All reagents used were of at least analytical grade purity. Acetonitrile and acetone were obtained from Merck (Darmstadt, Germany), while methanol and toluene were purchased from Honeywell Chromasolv (Seelze, Germany). Anhydrous magnesium sulfate and sodium chloride were obtained from Êxodo Científica (São Paulo, Brazil), and formic acid from JT Baker (Deventer, Netherlands). Ultrapure water (resistivity of 18.2 MΩ cm) was obtained using a Milli-Q purification system (Millipore, Bedford, MA, USA).

Two dispersive SPE (d-SPE) kits (Agilent Technologies, Santa Clara, CA, USA) were used for clean-up purposes. These kits contained 25 mg of primary-secondary amine (PSA), 2.5 mg of graphitized carbon (GCB) and 150 mg of MgSO4 (pigmented fruits and vegetables) (tests B and C – Table 1), or 25 mg of PSA, 7.5 mg of GCB and 150 mg of MgSO4 (highly pigmented fruits and vegetables) (tests D and E – Table 1).

Table 1 Extraction protocols tested prior to validation
Extraction protocol A B C D E
Slurry portion 10 g of M. officinalis (1[thin space (1/6-em)]:[thin space (1/6-em)]4 ratio) or 14 g of M. sylvestris (1[thin space (1/6-em)]:[thin space (1/6-em)]6 ratio)
Extraction solvent 10 mL of acetonitrile 10 mL of acetonitrile + 1% formic acid
Partitioning salts 4 g MgSO4 + 1 g NaCl
Clean-up 1 mL upper layer to 25 mg of PSA, 2.5 mg of GCB and 150 mg of MgSO4 1 mL upper layer to 50 mg of PSA, 5 mg of GCB and 300 mg of MgSO4 1 mL upper layer to 25 mg of PSA, 7.5 mg of GCB and 150 mg of MgSO4
Dilution 1[thin space (1/6-em)]:[thin space (1/6-em)]1
Analysis LC-MS/MS


Reference standards

Reference standards of pesticides (purity > 97%) were obtained from Dr Ehrenstorfer (Augsburg, Germany), while the mycotoxin standards (purity > 98%) were obtained from Fermentek Biotechnology (Jerusalem, Israel) and Sigma-Aldrich (St. Louis, USA).

Individual stock solutions of pesticides (1000 mg L−1) were prepared by dissolving the reference standards in toluene, methanol, or acetone, depending on their solubility. Similarly, individual stock solutions of mycotoxins (500 or 1000 mg L−1) were prepared in acetonitrile or methanol. A standard mixture solution of 150 pesticides (1 mg L−1) was prepared by diluting 100 µL of each stock solution in 100 mL of 0.1% formic acid in methanol (v/v). The 11 mycotoxins were divided into two groups based on their sensitivity in the liquid chromatographer-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) system. Group M1 included aflatoxins B1, B2, G1, G2, and ochratoxin A, while Group M2 included diacetoxyscirpenol (DAS), deoxynivalenol (DON), fumonisins B1 and B2, T2-toxin, zearalenone (ZEN). A solution containing 0.5 mg L−1 of standard mixture M1 and 25 mg L−1 of M2 was prepared by appropriately diluting the stock solutions with acetonitrile.

Analytical work solutions of pesticides and mycotoxins were prepared by suitably diluting the mixture solutions with acetonitrile. All solutions were stored at −18 °C in amber glass.

LC-MS/MS

Chromatographic analysis was performed using an Agilent 1260 prime II Liquid chromatography system coupled to a triple quadrupole mass spectrometer (LC-TQ-MS/MS) (ULTIVO, Agilent technologies, USA) with an Agilent Jet Stream Technology ion source (AJS), operating in dynamic multiple reaction monitoring (dMRM) mode. Chromatographic separations were carried out on an Infinity Lab Poroshell 120 EC1-C18 (2.1 mm i.d. O 100 mm O2.7 µm) reverse phase analytical column coupled to a pre-column (UHPLC GUARD Infinity Lab Poroshell) of the same stationary phase. Water (A) and acetonitrile (B), both acidified with 0.1% (v/v) formic acid, were used as the mobile phase at a constant flow rate of 0.3 mL min−1. The gradient elution program ranged from 20 to 90% B from 0 to 5 min. This condition was maintained for 4 min, then changed to 95% B from 9 to 9.25 min and maintained for 2 min. Finally, the mobile phase was changed to the initial composition from 11.25 to 14 min. The chromatographic column was maintained at 45 °C (±0.5 °C) and the injection volume was 2 µL.

All mass spectrometer parameters were optimized using the Optimizer software version 1.1 (Agilent, USA).

Sample preparation

According to the Brazilian pharmacopeia,32 the pharmacologically active parts of M. officinalis are the dried leaves, while for M. sylvestris, they are the entire or fragmented dried flowers. Therefore, all samples used as blank samples (free of pesticides and mycotoxins) were in accordance with Brazilian pharmacopeia criteria.

Commercially available organic samples identified by sellers as M. officinalis and M. sylvestris were purchased from local pharmacies in Santa Maria city, Brazil. These samples were checked for the absence of pesticides and mycotoxins before being used as blank samples for method optimization and validation.

Samples were obtained individually or in groups of packages with the same lot number, containing a minimum amount of 200 g, as recommended by sampling methods.33 The dried leaves and flowers were ground separately in a multiprocessor and sieved (granulometry 1 µm). Before the extraction procedure, the samples were hydrated for 30 min with ultrapure water 1[thin space (1/6-em)]:[thin space (1/6-em)]4 and 1[thin space (1/6-em)]:[thin space (1/6-em)]6 (w/w) for M. officinalis and M. sylvestris, respectively, at 8 °C, forming a slurry.

Extraction procedure

The extraction procedure employed was a modification of the QuEChERS method using the highly pigmented fruits and vegetables clean-up kit from Agilent Technologies. A slurry of 10 g (1[thin space (1/6-em)]:[thin space (1/6-em)]4 ratio) of M. officinalis leaves or 14 g (1[thin space (1/6-em)]:[thin space (1/6-em)]6 ratio) of M. sylvestris flowers was weighed in a 50 mL PTFE centrifuge tube. Subsequently, 10 mL of acetonitrile acidified with 1% formic acid was added, along with 40 µL of propoxur, which served as the internal standard solution. It should be noted that the concentration of propoxur in this study was 20 ng mL−1. The tubes were shaken using an automatic mechanical shaker (Orbital Shaker 3016, Gesellschaft für Labortechnik mbH, Germany) for 1 minute. Following this, 4 g of magnesium sulfate and 1 g of sodium chloride were added, and the samples were vortexed for an additional 1 minute. The extracts were then centrifuged at 4000 rpm for 4 minutes, and 1 mL of the supernatant was transferred to a dispersive clean-up kit. After homogenizing the tubes in a vortex for 1 minute, they were centrifuged again (4000 rpm, 4 minutes), and 0.5 mL of the extract was transferred to a vial and diluted with 0.5 mL of acetonitrile/water (1[thin space (1/6-em)]:[thin space (1/6-em)]1, v/v) containing the injection internal standard solution of PCB-153 at a concentration of 100 ng mL−1.

To develop a fast extraction protocol that causes less damage to the chromatographic system, which is robust and reliable, and still presents acceptable recovery rates, five preliminary studies were conducted to evaluate the accuracy, precision and matrix effects. For all tests, the slurries of M. officinalis and M. sylvestris samples were spiked (n = 3) at two different levels with pesticides (10 and 70 µg kg−1) and mycotoxins (group 1[thin space (1/6-em)]:[thin space (1/6-em)]2 and 20 µg kg−1; group 2[thin space (1/6-em)]:[thin space (1/6-em)]100 and 1000 µg kg−1), simultaneously.

Solvent extraction evaluation

Since the proposed method aims to extract a variety of target analytes with different polarities, pKa, and other chemical properties, two approaches were tested to evaluate the recovery rate of analytes. The first approach used pure acetonitrile according to the original QuEChERS method. The second approach employed acetonitrile acidified with 1% (v/v) formic acid to improve recovery, especially for mycotoxins.

Sorbent evaluation for clean-up

The absence of and different proportions of dispersive solid-phase extraction (d-SPE) sorbents (Table 1) were tested for selectivity, sensitivity, reliability, acceptable accuracy and precision, and to achieve less damage to the chromatographic system. Mixtures of primary secondary amine (PSA) and graphitized carbon black (GCB) were tested to remove pigments (mostly chlorophyll), sugars, lipids, flavonoids, acids, and carotenoids.34

Method performance

Analyte identification and confirmation were conducted according to SANTE document 11312/2021,35 including retention time standard (±0.1 min), and at least two product ions with fully overlapping peaks and ion ratio within ± 30%.

Method validation

A validation protocol in accordance with SANTE document 11312/2021 (ref. 35) was conducted for the simultaneous determination of pesticides and mycotoxins in M. officinalis and M. sylvestris. The analytical method validation assessed the following parameters: sensitivity, selectivity, linearity of the analytical curves, matrix effects, trueness (expressed as recovery percentage), precision as repeatability RSDr and reproducibility (RSDWR), limit of detection (LOD), and limit of quantification (LOQ).

For linearity, sensitivity, and matrix effect evaluation, seven different solutions for each concentration were prepared. For pesticides and mycotoxins of group 1, the concentrations of the solutions were 0.1, 0.5, 1, 5, 10, 25, 50 and 100 ng mL−1. For mycotoxins of group 2 the concentrations of analytical solutions prepared in neat organic solvent (acetonitrile) and in blank M. officinalis and M. sylvestris extracts were 5, 25, 50, 250, 500, 1250, 2500 and 5000 ng mL−1. Each solution was injected seven times.

The LOD was considered the lowest concentration level, injected repeatedly, obtained from 7 injections of an analytical solution prepared in blank matrix extract with a signal-to-noise ratio (S/N) ≥ 3. The LOQ was considered the lowest concentration level spiked with acceptable accuracy (70–120%) and precision (RSD ≤ 20%) obtained by the proposed analytical method.

Spiking/recovery experiments were performed by two different analysts on two different days to evaluate method reproducibility (RSDWR). Matrix effects were calculated as described by Dias et al.36 For accuracy (trueness and precision), recovery experiments were conducted by spiking blank M. officinalis and M. sylvestris at concentration levels of 10, 20, 50, and 70 µg kg−1 for pesticides; 2, 5, 10, and 20 µg kg−1 for mycotoxins of group 1; and 100, 250, 500, and 1000 µg kg−1 for mycotoxins of group 2. Seven replicates for each spiked level (n = 7) were performed by each analyst on two different days, totaling fourteen replicates (n = 14). All samples were extracted as mentioned in the section ‘Extraction Procedure’.

Repeatability (RSDr) was calculated for each analyst from recovery experiments performed using the same extraction protocol, quantification method, system, and blank sample on the same day. Reproducibility (RSDWR) was obtained via intermediate precision assessment by executing the same recovery experiments with different analysts, with a one-week interval between recovery experiments.

Sampling

The medicinal herb samples were obtained from the Public Market in Porto Alegre city, Rio Grande do Sul State, Brazil, due to the commercialization, consumer turnover, and location. The samples were collected from 10 commercial stores between May 2021 and July 2022. Each sample consisted of at least 200 g of medicinal herbs, comprising 23 samples of M. officinalis leaves and 19 samples of M. sylvestris flowers, totaling 42 samples over the course of the study.

Results and discussion

Over the years, with the rise in food inspection and the escalating demand for quality control analyses, coupled with the need for promptly delivering results, multianalyte methods have garnered attention for their ability to analyze a diverse range of substances in a single operation. Methods enabling the simultaneous detection of pesticides and mycotoxins are available for various matrices, including fruits,37 cereals,38–40 wine,41 eggs,42 feed,15,43,44 raw coffee,45 and even some teas,18,46 spices, medicinal herbs,47 and infant milk formulae.48

While there are methods available for analyzing teas and spices, these primarily focus on green and black teas. Additionally, there is currently no validated method for the simultaneous analysis of mycotoxins and pesticides in medicinal herbs, specifically comparing the dried flowers of M. sylvestris and the dried leaves of M. officinalis.

Clean-up optimization

Each matrix submitted to an extraction protocol for the analysis of residues and contaminants must undergo an optimization process. This optimization improves the selectivity of the analytes, reduces the matrix effect, and achieves quantification limits at low concentration levels while maintaining the accuracy and precision required in an analytical method.

Medicinal herbs are particularly challenging matrices containing various extractable compounds such as pigments, essential oils, and flavonoids that may cause notable matrix effects in chromatographic analysis. The concern is not only about signal suppression caused by the co-extracts but also the potential damage caused to the systems, reducing the overall lifespan of the consumables. In addition, in long injection sequences, dirt can accumulate in the ionization source, decreasing the detectability along the sequence. Thus, a sample injected at the beginning and at the end of the sequence can present significant deviations in results, decreasing the accuracy and precision of the method.34

To improve method performance, different sorbent quantities were compared via recovery experiments, applying the following spike levels for mycotoxins groups: group 1: 2 and 20 µg kg−1; group 2: 100 and 1000 µg kg−1; and for pesticides: 10 and 70 µg kg−1, n = 3.

No clean-up step and two d-SPE kits (25 mg PSA + 2.5 mg GCB + 150 mg MgSO4 (tests B and C), and 25 mg PSA, 7.5 mg GCB + 150 mg of MgSO4 (tests D and E)) were tested (Table 1). The results are shown in Fig. 1 and 2, respectively, for the mycotoxins and pesticides. The concentration levels 1 and 2 were, respectively, 10 and 50 µg kg−1 for the pesticides; 2 and 10 µg kg−1 for the mycotoxins of group 1; and 100 and 500 µg kg−1 for the mycotoxins of group 2.


image file: d4ay00599f-f1.tif
Fig. 1 Number of mycotoxins presenting recoveries within the range of 70–120% in assays A, B, C, D and E, for M. officinalis and M. sylvestris.

image file: d4ay00599f-f2.tif
Fig. 2 Number of pesticides presenting recoveries within the range of 70–120% in assays A, B, C, D and E, for M. officinalis and M. sylvestris.

When no clean-up step was conducted, a highly pigmented extract was obtained for both matrices, causing the extensive deposition of co-extractives in the ion source, decreasing precision and causing a significant loss in detectability within the same injection sequence.

To efficiently remove pigment interferences from the extracts, graphitized carbon black (GCB) is a worthy option. However, it might also retain specific analytes, such as aromatic compounds and/or planar pesticides, due to π–π interactions.49 To mitigate this problem, small quantities of GCB were tested (2.5, 5 and 7.5 mg), with the latter being able to remove enough pigment while maintaining acceptable method accuracy and precision.

In this study, the final combination of PSA (25 mg) and GCB (7.5 mg) plus 150 mg of MgSO4 was the most effective for removing matrix co-extracts while maintaining acceptable recoveries and avoiding significant damage to the LC-TQ-MS/MS system. For instance, cyprodinil presented recoveries ranging from 71% to 83% and proper precision (RSD < 18%) despite the use of GCB. These results were also verified by Ly et al.50 who used GCB in green tea extraction and obtained satisfactory results for this pesticide. Fig. 3 represents a total ion chromatogram of two injections of the same vial, at the beginning and the end of a work list of over 100 injections and 16 h difference between those two injections, of fenamiphos and aflatoxin B1. No significant loss in precision was verified when comparing those two injections of both analytes.


image file: d4ay00599f-f3.tif
Fig. 3 Mycotoxin Aflatoxin B1 and pesticide Fenamiphos chromatograms obtained by analysis of: (a)(f) M. sylvestris blank extract, (b)(g) melissa blank extract, (c)(h) 1 ng mL−1 analytical solution in organic solvent, (d)(i) 1 ng mL−1 analytical solution in malva blank extract, (e)(j) 1 ng mL−1 analytical solution in M. officinalis blank extract.

Sample preparation optimization

Furthermore, the wide range of polarities, acidities and solubilities of pesticides and mycotoxins makes it challenging to develop and validate an appropriate analytical method for simultaneous determination. Additionally, representative food matrices belonging to the same food group (SANTE 11312/2021) are often used for optimization of time, reagents, and other parameters. However, in the case of dry medicinal plants, which contain a larger number of secondary metabolites (such as flavonoids, saponins and alkaloids), using a single representative matrix may present weaknesses in quantification due to differences in analytical signal suppression and enhancement in the LC-TQ-MS/MS system.

For matrices with low water content, it is recommended to add water to increase the extraction efficiency. Therefore, a slurry was prepared with cold water (8 °C) for matrix rehydration (≈30 minutes) to facilitate the extraction of the analytes and prevent matrix components from being extracted and interfering with the instrumental analysis.

Analytical method validation

The validation data summarized in Table 2 show the linear range, matrix effect, LOQ, and LOD. Tables 3 and 4 demonstrate recoveries, precision (RSDr) and intermediate precision (RSDWR) for M. officinalis and M. sylvestris obtained from the method validation procedure for all spike levels studied.
Table 2 Linear range, matrix effect (ME), LOD and LOQ for all analytes in M. officinalis and M. sylvestris
Pesticide/Mycotoxin Melissa officinalis Malva sylvestris
Linear range (µg kg−1) ME (%) LOD (µgkg−1) LOQ (µg kg−1) Linear range (µg kg−1) ME (%) LOD (µg kg−1) LOQ (µg kg−1)
a Mycotoxins. b n.f.r.: not fulfill requirements of SANTE document.
Acephate 5–1000 −74 5 10 5–1000 −80 1 20
Acetamiprid 5–1000 −10 5 10 1–1000 50 1 10
Acetochlor 10–1000 −5 5 20 10–1000 −16 5 10
Aflatoxin B1 5–500 −70 1 5 5500 −20 1 5
Aflatoxin B2 5–500 −71 3 5 10500 −17 1 20
Aflatoxin G1 5–500 −53 3 5 51000 31 4 5
Aflatoxin G2 5–500 −12 3 5 51000 9 1 5
Aldicarb sulfone 1–500 −24 5 10 5–1000 −29 1 10
Aldicarb sulfoxide 5–500 −77 1 10 5–500 −76 5 10
Atrazine 5–1000 −17 1 10 5–500 −10 1 10
Azamethiphos 5–500 0 1 10 5–1000 −4 1 10
Azinphos-methyl 10–500 23 5 10 50–1000 −15 1 50
Azoxystrobin 5–500 55 1 10 10–500 29 1 10
Bifenazate 10–500 11 1 10 10–500 11 1 n.f.r.b
Bitertanol 5–1000 20 1 10 5–1000 −12 1 20
Boscalid 10–500 −8 1 10 5–500 −10 1 10
Bupirimate 5–500 −26 1 10 5–500 −21 1 10
Buprofezin 5–500 −32 1 10 5–500 −37 1 10
Cadusafos 10–500 8 1 10 5–1000 47 1 10
Carbaryl 5–500 −22 1 10 5–1000 −18 1 10
Carbendazin 5–500 −67 1 10 10–1000 −75 1 70
Carbofuran 5–500 −11 1 10 10–500 7 1 10
Carpropamid 5–500 −13 5 10 5–500 −28 1 20
Chlorantraniliprol 5–500 −5 5 20 5–1000 6 5 20
Chlorfenvinphos 10–500 13 1 10 5–500 3 5 10
Chlorpyrifos 5–500 −3 5 10 5–1000 −19 5 10
Clofentezine 10–1000 −25 8 10 10–1000 −7 8 10
Clomazone 10–500 −14 1 10 5–1000 −13 1 10
Clothianidin 10–1000 −14 8 10 5–1000 −2 5 10
Cyazofamid 50–500 −29 5 10 10–500 −36 5 20
Cyproconazol 10–500 7 5 10 5–1000 −14 5 10
Cyprodinil 5–500 −48 5 10 10–500 −48 5 10
Demeton-S-methyl sulfone 5–1000 9 5 10 5–1000 21 1 10
Demeton-S-methyl sulfoxide 10–1000 −72 5 10 5–1000 −71 1 20
Deoxynivalenol 250–5000 −67 50 250 250–5000 −65 250 500
Diacetoxyscirpenol 250–5000 −15 25 250 500–2500 21 250 500
Diazinon 10–500 −12 1 10 5–1000 2 1 10
Diethofencarb 10–500 17 1 10 50–1000 n.f.r.b 1 n.f.r.b
Difenoconazole 5–1000 −15 1 10 10–1000 −7 1 10
Diflubenzuron 50–1000 −18 10 n.f.r.b 50–1000 15 10 70
Dimethoate 1–1000 −23 1 10 1–1000 −3 1 10
Dimethomorph 10–500 42 1 10 50–500 50 1 10
Diniconazol 5–500 −8 5 10 5–1000 −10 1 10
Diphenylamine 5–1000 −17 1 10 5–500 −34 5 10
Diuron 10–500 −42 5 10 5–1000 −8 1 10
DMST 10–1000 −7 10 50 10–1000 5 10 50
Epoxiconazol 10–1000 −4 1 10 10–1000 15 1 10
Ethion 10–500 58 1 10 10–500 −5 1 10
Ethiprole 10–500 −15 1 10 10–500 −7 5 10
Ethoprophos 10–500 10 1 10 5–500 −7 5 10
Etofenprox 10–500 −10 1 10 5–1000 −6 1 10
Etoxazol 10–1000 −19 1 10 5–1000 −44 1 10
Fenamidone 5–500 3 1 10 5–500 5 1 10
Fenamiphos 10–500 78 1 10 5–1000 29 1 20
Fenarimol 5–1000 −17 5 20 5–500 15 1 50
Fenazaquin 5–500 30 1 10 5–1000 −29 1 10
Fenbuconazol 5–500 −2 1 10 5–500 7 5 20
Fenhexamid 10–500 −37 1 10 10–500 9 1 20
Fenobucarb 10–500 −19 1 10 10–500 −32 1 10
Fenoxycarb 10–500 −31 5 20 10–1000 −40 1 20
Fenpropimorph 5–1000 −13 1 10 5–1000 −14 1 10
Fenpyroximate 5–500 −4 1 10 5–1000 −16 1 10
Fensulfothion 50–1000 39 5 50 50–1000 23 10 50
Fluazifop-butyl 10–500 −5 1 10 5–1000 7 1 10
Fludioxonil 5–1000 −17 5 10 10–500 −20 1 10
Flufenoxuron 10–500 −42 1 10 50–1000 −24 20 50
Fluquinconazol 10–1000 −25 10 20 5–500 −25 1 20
Flusilazol 5–500 −8 1 10 5–500 −26 1 10
Flutolanil 50–1000 −2 1 50 5–1000 −10 1 20
Flutriafol 10–1000 −9 8 10 5–500 2 1 10
Fosthiazate 10–1000 7 1 10 5–1000 −6 1 10
Fumonisin B1 250–5000 51 250 500 250–5000 −1 250 n.f.r.
Fumonisin B2 250–5000 −16 250 500 250–5000 −31 500 n.f.r.
Furalaxyl 10–500 18 1 10 5–500 20 1 20
Furathiocarb 5–1000 8 1 10 5–1000 4 1 10
Halofenozide 50–1000 −23 10 50 10–1000 −33 10 n.f.r.b
Haloxyfop-2-ethoxyethyl 5–1000 −8 1 10 5–1000 −41 1 n.f.r.b
Hexaconazol 5–1000 −16 5 10 5–1000 −31 5 10
Hexytiazox 5–1000 −6 1 10 1–1000 −42 1 10
Imazalil 10–1000 −26 10 20 10–1000 −22 5 10
Imazapic 5–500 −32 5 10 10–500 5 5 10
Imazetapyr 5–1000 3 1 10 5–1000 35 5 10
Imidacloprid 5–1000 31 1 10 10–1000 98 8 10
Indoxacarb 5–1000 34 1 20 5–1000 97 5 10
Iprovalicarb 5–1000 20 1 10 5–1000 −6 1 10
Isoxaflutole 5–1000 −30 5 50 50–1000 −20 10 50
Kresoxim-methyl 5–1000 −16 1 10 5–1000 −16 5 20
Linuron 50–1000 −40 10 50 50–1000 −32 20 50
Lufenuron 10–500 −58 8 10 5–500 −84 5 10
Malathion 5–1000 14 1 10 5–1000 11 5 20
Mecarbam 5–1000 5 5 10 5–1000 4 1 10
Mepanipyrim 5–500 −44 1 20 10–1000 −17 10 50
Metalaxyl 5–1000 23 1 20 10–1000 33 1 10
Metconazole 5–1000 −75 5 20 5–1000 −29 5 20
Methamidophos 50–1000 −77 10 50 10–1000 −76 5 70
Methidathion 10–1000 −5 10 20 50–1000 −31 5 n.f.r.b
Methiocarb 5–1000 −33 5 20 5–1000 −30 5 20
Methomyl 5–1000 −10 1 10 5–500 −21 1 10
Methoxyfenozide 5–1000 31 1 10 5–500 15 1 20
Monocrotophos 1–1000 −62 1 10 10–1000 −57 1 20
Myclobutanil 5–1000 −45 1 10 5–1000 −1 1 10
Nitenpyram 10–1000 −76 5 50 50–1000 −82 1 70
Ochratoxin A 10–1000 20 8 10 10–1000 6 10 20
Ofurace 10–500 46 1 10 5–1000 59 1 10
Omethoate 5–1000 −76 1 10 n.f.r.b −76 n.f.r.b n.f.r.b
Oxadixyl 10–500 5 5 10 5–1000 −10 1 10
Oxamyl 5–1000 −20 1 10 5–1000 −35 1 10
Paclobutrazol 10–1000 2 10 20 5–500 −4 1 10
Penconazole 5–500 −22 1 10 10–1000 −29 1 10
Pencycuron 5–1000 6 1 10 5–1000 64 1 10
Pendimethalin 5–500 −4 5 10 5–1000 −21 1 10
Phenothrin 50–1000 −19 20 50 50–1000 2 20 50
Phenthoate 5–500 −28 5 10 5–500 −21 1 10
Phosalone 50–1000 −4 10 50 50–1000 2 20 50
Phosmet 50–1000 −8 5 50 5–1000 −21 5 20
Picoxystrobin 5–500 −18 1 10 10–1000 −22 1 10
Piperonyl butoxide 5–1000 −25 1 10 5–1000 −27 1 10
Pirimicarb 5–1000 −21 1 10 5–1000 −17 1 10
Pirimiphos-ethyl 1–1000 −15 1 10 5–1000 −25 1 10
Pirimiphos-methyl 5–1000 −20 1 10 5–1000 −15 1 10
Prochloraz 1–1000 11 1 10 5–1000 6 1 10
Profenofos 5–500 −29 1 10 5–1000 −45 1 20
Prometryn 5–1000 −22 1 10 5–1000 −20 1 10
Propamocarb 10–500 −36 1 n.f.r.b 10–500 −61 1 70
Propanil 1–1000 −26 10 50 5–1000 −21 5 50
Prophan 10–1000 −33 8 10 50–1000 −8 20 50
Propiconazol 5–500 −13 1 10 5–500 5 1 10
Propyzamide 10–1000 −19 8 10 5–1000 22 5 10
Pyraclostrobin 5–1000 −27 1 10 5–1000 −25 1 10
Pyrazophos 10–500 35 5 10 5–1000 50 1 10
Pyridaben 5–1000 −9 1 10 5–1000 −58 1 10
Pyrimethanil 5–500 −38 1 10 5–1000 −31 1 10
Pyriproxyfen 5–500 −24 1 10 5–1000 −30 1 10
Quinalphos 1–1000 −42 1 10 5–500 −18 5 10
Quinoxyfen 1–1000 −16 1 10 5–1000 −15 1 10
Simazine 5–500 −35 1 10 10–1000 −23 5 10
Spinosyn A 5–1000 −39 1 10 5–1000 −25 1 20
Spinosyn D 5–1000 −35 5 10 5–1000 −35 5 10
Spirodiclofen 5–500 24 5 50 5–500 −46 5 10
Spiromesifen 5–500 19 5 20 10–1000 −58 10 20
Spiroxamine 1–1000 −11 1 10 1–1000 −11 1 10
Tau-fluvalinate 50–1000 19 50 70 50–1000 −55 10 50
Tebuconazol 5–500 8 5 10 5–500 14 1 10
Tebufenozide 5–1000 −12 1 20 5–500 −14 1 10
Tebufenpyrad 5–500 −15 5 10 5–1000 −35 1 10
Terbutryn 5–1000 −37 1 10 5–1000 −20 1 10
Tetrachlorvinphos 10–1000 −13 10 50 50–1000 −58 10 50
Tetraconazole 5–500 0 5 10 10–1000 −4 5 10
Tetramethrin 10–1000 −4 8 10 10–500 −13 5 10
Thiacloprid 1–500 −8 1 10 5–500 2 1 10
Thiamethoxam 5–1000 −7 5 70 5–500 17 1 10
Thiodicarb 5–500 −2 5 10 10–1000 55 1 n.f.r.b
Toxin T2 50–2500 −12 25 500 250–50[thin space (1/6-em)]000 3 5 1000
Triadimefon 10–1000 9 8 10 10–1000 49 1 10
Triadimenol 10–1000 21 8 n.f.r.b 1–500 23 1 70
Triazophos 5–500 20 1 10 10–1000 −22 1 20
Trifloxystrobin 5–500 −8 1 10 5–1000 −45 1 10
Triflumizol 5–1000 −40 1 10 10–1000 −40 1 10
Triticonazol 1–1000 4 1 10 5–500 −6 1 10
Zearalenone 25–2500 −31 25 250 250–25[thin space (1/6-em)]000 −35 25 500
Zoxamide 5–500 −19 5 10 5–500 −21 5 10


Table 3 Average recoveries, precision (RSDr) and intermediate precision (RSDWR) obtained for M. officinalis from the method validation procedure
Concentration 1 Concentration 2 Concentration 3 Concentration 4
Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value
Analyst 1 Analyst 2 Analyst 1 Analyst 2 Analyst 1 Analyst 2 Analyst 1 Analyst 2
a Mycotoxins. b n.f.r.: not fulfill requirements of SANTE document.
Acephate 82 (16) 76 (15) 79 (15) 0.214 82 (8) 74 (11) 78 (11) 0.156 81 (5) 80 (20) 81 (14) 0.949 91 (8) 85 (10) 88 (9) 0.109
Acetamiprid 99 (15) 85 (7) 92 (14) 0.071 87 (14) 76 (6) 81 (13) 0.075 95 (16) 83 (11) 89 (16) 0.102 83 (16) 79 (5) 81 (12) 0.496
Acetochlor 90 (27) 81 (12) 86 (22) 0.424 91 (14) 78 (12) 84 (15) 0.139 88 (14) 87 (16) 88 (15) 0.926 87 (9) 82 (15) 84 (12) 0.526
Aflatoxin B1 60 (60) 114 (26) 87 (48) 0.000 99 (18) 95 (19) 97 (17) 0.785 88 (16) 104 (13) 96 (17) 0.112 84 (17) 97 (8) 91 (14) 0.138
Aflatoxin B2 77 (19) 31 (0) 54 (47) 0.000 83 (12) 95 (15) 89 (15) 0.196 87 (18) 92 (8) 90 (13) 0.406 83 (7) 89 (8) 86 (8) 0.056
Aflatoxin G1 n.f.r. n.f.r. n.f.r. n.f.r. 86 (19) 83 (18) 84 (18) 0.543 85 (9) 88 (6) 87 (8) 0.418 91 (14) 99 (5) 95 (11) 0.083
Aflatoxin G2 n.f.r. n.f.r. n.f.r. n.f.r. 102 (19) 79 (6) 90 (20) 0.035 97 (15) 81 (11) 89 (16) 0.093 80 (12) 73 (6) 77 (11) 0.060
Aldicarb sulfone 98 (15) 91 (14) 95 (15) 0.302 98 (8) 91 (11) 95 (10) 0.064 106 (5) 113 (16) 110 (12) 0.361 103 (14) 106 (11) 105 (12) 0.547
Aldicarb sulfoxide 94 (19) 81 (15) 87 (18) 0.212 83 (13) 75 (16) 79 (14) 0.334 80 (14) 75 (5) 77 (11) 0.224 81 (4) 82 (8) 81 (6) 0.762
Atrazine 100 (10) 89 (12) 95 (12) 0.163 91 (8) 83 (11) 87 (10) 0.083 88 (4) 78 (12) 83 (10) 0.019 83 (9) 76 (9) 79 (10) 0.052
Azamethiphos 85 (15) 75 (3) 80 (13) 0.114 87 (11) 75 (7) 81 (12) 0.060 86 (12) 78 (22) 82 (17) 0.217 96 (7) 84 (15) 90 (13) 0.155
Azinphos-methyl 88 (16) 81 (16) 85 (16) 0.431 92 (18) 102 (6) 97 (13) 0.196 80 (8) 74 (4) 77 (7) 0.141 96 (14) 105 (4) 101 (11) 0.087
Azoxystrobin 95 (13) 99 (6) 97 (10) 0.493 91 (9) 81 (8) 86 (10) 0.060 85 (10) 78 (18) 81 (14) 0.236 83 (18) 71 (5) 77 (16) 0.091
Bifenazate 78 (9) 86 (9) 82 (10) 0.081 84 (16) 91 (1) 88 (11) 0.283 72 (3) 69 (8) 71 (6) 0.260 86 (15) 99 (8) 93 (13) 0.072
Bitertanol 85 (13) 81 (16) 83 (14) 0.505 85 (13) 77 (15) 81 (14) 0.076 91 (7) 87 (20) 89 (14) 0.490 90 (8) 96 (20) 93 (15) 0.480
Boscalid 96 (12) 107 (12) 101 (13) 0.119 94 (7) 99 (5) 96 (6) 0.256 87 (3) 80 (11) 84 (9) 0.108 83 (8) 80 (20) 81 (14) 0.764
Bupirimate 98 (9) 91 (11) 94 (10) 0.094 89 (7) 84 (15) 86 (12) 0.303 85 (3) 80 (18) 82 (13) 0.409 80 (8) 74 (10) 77 (10) 0.117
Buprofezin 90 (11) 79 (19) 85 (16) 0.165 86 (5) 76 (19) 81 (14) 0.153 83 (2) 75 (18) 79 (13) 0.177 74 (15) 86 (16) 80 (17) 0.196
Cadusafos 96 (10) 98 (8) 97 (9) 0.735 91 (6) 101 (14) 96 (12) 0.053 87 (5) 77 (16) 82 (13) 0.141 87 (9) 83 (16) 85 (13) 0.496
Carbaryl 93 (11) 78 (18) 85 (16) 0.089 89 (11) 83 (7) 86 (10) 0.197 85 (10) 77 (11) 81 (12) 0.061 78 (18) 87 (2) 83 (13) 0.159
Carbendazim 79 (9) 72 (14) 75 (12) 0.258 74 (11) 77 (19) 76 (15) 0.517 72 (15) 80 (11) 76 (14) 0.137 71 (6) 74 (6) 72 (6) 0.35
Carbofuran 111 (9) 100 (13) 106 (12) 0.082 111 (11) 99 (8) 105 (11) 0.073 118 (8) 108 (16) 113 (13) 0.080 113 (11) 103 (5) 108 (9) 0.083
Carpropamid 84 (18) 94 (17) 89 (18) 0.306 82 (14) 95 (19) 88 (18) 0.161 83 (12) 96 (12) 89 (14) 0.115 97 (13) 103 (12) 100 (12) 0.387
Chlorantraniliprole 56 (41) 39 (37) 48 (43) 0.247 82 (18) 86 (19) 84 (18) 0.579 96 (15) 85 (19) 90 (17) 0.240 92 (9) 77 (17) 85 (15) 0.074
Chlorfenvinphos 92 (18) 108 (10) 100 (16) 0.134 94 (13) 101 (4) 97 (10) 0.156 80 (9) 79 (5) 80 (7) 0.749 85 (16) 85 (5) 85 (12) 0.931
Chlorpyrifos 101 (15) 92 (19) 96 (17) 0.339 97 (20) 106 (19) 102 (19) 0.335 76 (10) 72 (8) 74 (9) 0.336 84 (12) 79 (8) 82 (11) 0.272
Clofentezine 83 (17) 99 (7) 91 (15) 0.065 100 (9) 110 (14) 105 (13) 0.170 78 (14) 73 (10) 75 (13) 0.370 91 (15) 79 (10) 85 (15) 0.054
Clomazone 88 (15) 80 (6) 84 (12) 0.193 90 (8) 83 (7) 87 (9) 0.060 85 (5) 77 (16) 81 (12) 0.216 83 (16) 75 (15) 79 (16) 0.388
Clothianidin 89 (18) 77 (8) 83 (16) 0.076 98 (7) 85 (22) 91 (16) 0.145 99 (11) 87 (14) 93 (14) 0.07 90 (11) 79 (9) 84 (12) 0.134
Cyazofamid 103 (16) 100 (14) 101 (15) 0.765 83 (13) 76 (10) 79 (12) 0.132 88 (9) 76 (19) 82 (15) 0.172 95 (8) 82 (19) 88 (15) 0.095
Cyproconazole 102 (10) 105 (10) 103 (10) 0.641 82 (12) 81 (10) 81 (10) 0.808 87 (4) 80 (13) 84 (10) 0.159 83 (13) 72 (5) 78 (12) 0.057
Cyprodinil 83 (10) 79 (4) 81 (8) 0.475 77 (6) 72 (13) 75 (10) 0.407 71 (6) 75 (10) 73 (9) 0.476 73 (4) 79 (8) 76 (8) 0.063
Demeton-S-methyl sulfone 103 (17) 95 (3) 99 (13) 0.254 96 (8) 89 (12) 93 (11) 0.176 94 (4) 83 (18) 89 (13) 0.095 96 (20) 80 (9) 88 (19) 0.075
Demeton-S-methyl sulfoxide 86 (9) 97 (17) 91 (15) 0.163 90 (18) 78 (4) 84 (16) 0.083 79 (12) 75 (20) 77 (16) 0.455 79 (12) 73 (11) 76 (12) 0.359
Deoxynivalenol n.f.r. n.f.r. n.f.r. n.f.r. 89 (9) 101 (16) 95 (15) 0.092 86 (14) 97 (5) 91 (12) 0.077 84 (9) 78 (2) 81 (8) 0.054
Diacetoxyscirpenol 67 (17) 128 (161) 98 (148) 0.000 85 (15) 90 (1) 88 (11) 0.353 81 (11) 76 (1) 79 (8) 0.144 97 (10) 99 (9) 98 (9) 0.697
Diazinon 95 (10) 101 (8) 98 (10) 0.266 94 (5) 99 (10) 97 (8) 0.322 92 (4) 84 (6) 88 (7) 0.052 87 (8) 84 (6) 86 (7) 0.467
Diethofencarb 91 (14) 79 (9) 85 (14) 0.124 89 (10) 80 (7) 85 (10) 0.127 87 (7) 88 (7) 88 (7) 0.648 81 (15) 88 (7) 84 (12) 0.175
Difenoconazole 94 (16) 81 (13) 87 (16) 0.073 91 (10) 83 (3) 87 (9) 0.051 81 (6) 72 (15) 76 (12) 0.094 80 (12) 73 (1) 76 (9) 0.095
Diflubenzuron n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r. n.f.r.
Dimethoate 103 (16) 87 (10) 95 (16) 0.073 100 (11) 91 (9) 95 (11) 0.180 98 (9) 85 (13) 91 (13) 0.091 89 (17) 88 (3) 88 (12) 0.799
Dimethomorph 96 (20) 81 (15) 89 (19) 0.059 101 (9) 94 (12) 98 (11) 0.185 87 (15) 77 (12) 82 (15) 0.110 91 (17) 81 (17) 86 (17) 0.278
Diniconazole 89 (19) 78 (9) 83 (16) 0.159 88 (10) 83 (13) 86 (11) 0.141 86 (8) 76 (11) 81 (11) 0.071 83 (14) 72 (8) 78 (13) 0.097
Diphenylamine 86 (19) 83 (1) 84 (13) 0.590 88 (17) 78 (16) 83 (17) 0.196 90 (16) 78 (15) 84 (17) 0.112 82 (11) 76 (14) 79 (13) 0.183
Diuron 83 (19) 81 (10) 82 (15) 0.687 81 (13) 72 (12) 76 (13) 0.220 78 (12) 74 (15) 76 (13) 0.567 82 (12) 70 (11) 76 (14) 0.095
DMST 64 (57) 90 (21) 77 (40) 0.188 88 (34) 62 (27) 75 (36) 0.072 97 (16) 83 (14) 90 (17) 0.149 107 (13) 93 (15) 100 (15) 0.099
Epoxiconazole 113 (19) 93 (7) 103 (17) 0.058 94 (20) 82 (4) 88 (16) 0.148 86 (9) 74 (19) 80 (16) 0.116 89 (8) 81 (13) 85 (11) 0.161
Ethion 84 (16) 79 (15) 81 (15) 0.502 83 (20) 95 (8) 89 (15) 0.130 77 (11) 78 (0) 77 (8) 0.831 84 (16) 78 (0) 81 (12) 0.300
Ethiprole 95 (14) 97 (6) 96 (11) 0.689 90 (19) 103 (17) 97 (18) 0.238 90 (17) 93 (7) 92 (13) 0.632 91 (10) 82 (19) 86 (15) 0.113
Ethoprophos 101 (13) 86 (7) 94 (13) 0.060 96 (9) 84 (12) 90 (12) 0.080 89 (6) 81 (14) 85 (11) 0.106 88 (12) 80 (14) 84 (13) 0.175
Etofenprox 93 (8) 86 (11) 89 (10) 0.124 89 (6) 86 (5) 87 (6) 0.215 75 (8) 83 (6) 79 (9) 0.072 82 (11) 82 (6) 82 (9) 0.990
Etoxazole 89 (10) 75 (16) 82 (15) 0.101 84 (4) 79 (11) 81 (8) 0.112 81 (4) 75 (15) 78 (11) 0.302 80 (11) 75 (15) 78 (13) 0.306
Fenamidone 94 (14) 101 (19) 97 (17) 0.573 88 (7) 97 (11) 92 (10) 0.069 91 (15) 93 (7) 92 (11) 0.638 86 (12) 95 (7) 90 (11) 0.130
Fenamiphos 91 (14) 94 (1) 93 (10) 0.560 88 (8) 84 (11) 86 (9) 0.381 83 (8) 81 (10) 82 (9) 0.581 82 (15) 73 (17) 78 (16) 0.113
Fenarimol 98 (47) 89 (1) 94 (34) 0.610 88 (13) 101 (16) 94 (16) 0.077 92 (13) 86 (19) 89 (16) 0.188 85 (8) 81 (4) 83 (7) 0.076
Fenazaquin 89 (11) 94 (6) 91 (9) 0.427 85 (8) 100 (16) 93 (15) 0.056 81 (9) 77 (14) 79 (12) 0.443 85 (11) 76 (14) 81 (14) 0.098
Fenbuconazole 115 (15) 104 (5) 110 (13) 0.199 95 (15) 109 (19) 102 (18) 0.280 89 (7) 86 (10) 88 (9) 0.419 91 (20) 86 (10) 88 (16) 0.509
Fenhexamid 107 (19) 108 (15) 107 (16) 0.892 99 (11) 85 (20) 92 (16) 0.071 87 (9) 74 (15) 80 (14) 0.072 87 (10) 78 (9) 83 (11) 0.062
Fenobucarb 86 (17) 75 (18) 81 (18) 0.070 93 (4) 86 (12) 89 (9) 0.136 92 (5) 89 (17) 90 (12) 0.696 81 (17) 73 (16) 77 (17) 0.334
Fenoxycarb 74 (43) 11 (444) 42 (121) 0.002 94 (15) 87 (18) 91 (16) 0.498 83 (18) 73 (11) 78 (16) 0.140 80 (18) 71 (11) 76 (16) 0.132
Fenpropimorph 84 (15) 76 (6) 80 (13) 0.112 77 (5) 74 (5) 76 (5) 0.213 77 (3) 73 (8) 75 (7) 0.093 77 (5) 75 (9) 76 (7) 0.316
Fenpyroximate 88 (12) 92 (4) 90 (9) 0.406 87 (16) 103 (12) 95 (16) 0.079 78 (15) 74 (11) 76 (13) 0.543 83 (20) 73 (11) 78 (17) 0.287
Fensulfothion −41 (0) 941 (3) 450 (113) 0.000 −20 (0) 493 (2) 236 (113) 0.000 97 (15) 105 (8) 101 (12) 0.234 92 (16) 108 (8) 100 (14) 0.071
Fluazifop-butyl 92 (13) 95 (8) 94 (10) 0.652 101 (11) 109 (13) 105 (12) 0.318 87 (8) 74 (14) 80 (13) 0.064 89 (15) 74 (14) 81 (17) 0.071
Fludioxonil 85 (16) 92 (17) 88 (17) 0.349 100 (18) 100 (13) 100 (15) 0.983 84 (19) 89 (13) 86 (16) 0.372 79 (18) 89 (13) 84 (16) 0.130
Flufenoxuron 105 (9) 89 (18) 97 (16) 0.072 96 (14) 87 (7) 91 (12) 0.151 95 (12) 85 (12) 90 (13) 0.058 81 (14) 72 (8) 77 (13) 0.125
Fluquinconazole 82 (13) 78 (17) 80 (15) 0.592 102 (15) 103 (6) 102 (11) 0.757 90 (14) 79 (12) 84 (14) 0.103 77 (11) 68 (12) 73 (13) 0.120
Flusilazole 96 (12) 112 (12) 104 (14) 0.107 90 (7) 85 (15) 88 (12) 0.320 87 (3) 84 (4) 86 (4) 0.258 83 (8) 72 (19) 77 (15) 0.081
Flutolanil 98 (15) 108 (7) 103 (12) 0.124 90 (7) 89 (15) 90 (11) 0.857 88 (8) 80 (13) 84 (11) 0.135 86 (14) 80 (13) 83 (13) 0.191
Flutriafol 98 (17) 107 (10) 103 (14) 0.303 87 (17) 100 (16) 94 (17) 0.226 87 (9) 88 (10) 87 (9) 0.889 82 (9) 90 (10) 86 (10) 0.088
Fosthiazate 92 (12) 81 (8) 87 (12) 0.067 91 (12) 81 (17) 86 (15) 0.146 87 (11) 76 (8) 81 (12) 0.014 92 (17) 77 (10) 84 (17) 0.066
Fumonisin B1 378 (2) 378 (2) 378 (1) n.f.r. 152 (3) 152 (3) 152 (3) n.f.r. 77 (4) 78 (3) 78 (3) 0.083 94 (5) 93 (5) 94 (5) 0.724
Fumonisin B2 351 (1) 351 (1) 351 (1) 0.819 147 (3) 149 (3) 148 (3) 0.085 77 (5) 78 (3) 78 (4) 0.356 75 (3) 83 (11) 79 (10) 0.107
Furalaxyl 93 (9) 79 (19) 86 (16) 0.055 91 (5) 85 (13) 88 (10) 0.266 88 (6) 77 (13) 82 (12) 0.081 88 (11) 75 (10) 81 (13) 0.054
Furathiocarb 93 (12) 98 (7) 96 (10) 0.437 88 (11) 85 (17) 87 (14) 0.668 84 (8) 75 (16) 80 (13) 0.100 88 (17) 75 (16) 82 (18) 0.08
Halofenozide 143 (23) 441 (60) 292 (81) 0.000 151 (27) 161 (81) 156 (59) 1.000 91 (10) 93 (18) 92 (14) 0.697 106 (9) 115 (15) 110 (13) 0.096
Haloxyfop-2-ethoxyethyl 93 (19) 102 (11) 98 (15) 0.188 83 (11) 93 (12) 88 (13) 0.051 80 (10) 79 (15) 79 (12) 0.913 79 (18) 79 (15) 79 (16) 0.939
Hexaconazole 92 (16) 77 (14) 84 (17) 0.12 84 (11) 73 (13) 78 (13) 0.069 83 (6) 77 (10) 80 (9) 0.140 78 (8) 74 (17) 76 (13) 0.565
Hexytiazox 87 (15) 95 (11) 91 (13) 0.368 81 (13) 87 (19) 84 (17) 0.516 81 (10) 73 (15) 77 (13) 0.064 76 (15) 73 (15) 75 (15) 0.451
Imazalil 90 (42) −268 (−3) −89 (−211) 0.000 84 (16) 95 (12) 90 (15) 0.086 70 (9) 69 (9) 70 (9) 0.809 80 (12) 90 (7) 85 (11) 0.127
Imazapic 88 (13) 97 (8) 93 (11) 0.141 83 (6) 97 (19) 90 (17) 0.154 81 (6) 75 (11) 78 (9) 0.197 81 (3) 75 (11) 78 (9) 0.127
Imazetapyr 83 (13) 78 (19) 81 (16) 0.318 81 (4) 78 (8) 79 (6) 0.103 77 (4) 72 (17) 75 (12) 0.288 74 (14) 79 (2) 77 (10) 0.203
Imidacloprid 95 (12) 83 (12) 89 (14) 0.099 114 (16) 119 (12) 117 (14) 0.441 100 (12) 105 (8) 102 (10) 0.518 97 (8) 107 (10) 102 (10) 0.069
Indoxacarb 106 (9) 92 (20) 99 (16) 0.078 88 (19) 98 (18) 93 (19) 0.067 81 (14) 75 (16) 78 (15) 0.291 84 (18) 76 (16) 80 (17) 0.183
Iprovalicarb 95 (13) 101 (18) 98 (16) 0.519 92 (15) 109 (17) 100 (18) 0.060 87 (10) 95 (8) 91 (10) 0.078 92 (16) 95 (8) 94 (12) 0.666
Isoxaflutole −30 (0) 903 (59) 437 (139) 0.000 95 (41) 105 (143) 100 (106) 1.000 84 (16) 85 (21) 85 (18) 0.896 98 (16) 93 (9) 96 (13) 0.548
Kresoxim-methyl 74 (18) 72 (20) 73 (18) 0.716 90 (13) 97 (10) 94 (12) 0.121 78 (14) 77 (12) 77 (13) 0.811 82 (21) 77 (12) 79 (17) 0.577
Linuron 111 (76) 20 (216) 66 (121) 0.000 80 (26) 78 (40) 79 (33) 0.884 73 (19) 75 (19) 74 (18) 0.816 84 (13) 85 (18) 84 (15) 0.862
Lufenuron 94 (15) 96 (9) 95 (12) 0.730 88 (16) 94 (3) 91 (11) 0.381 82 (6) 79 (12) 81 (9) 0.369 83 (20) 79 (12) 81 (16) 0.608
Malathion 91 (15) 97 (9) 94 (13) 0.380 85 (9) 95 (8) 90 (10) 0.051 85 (11) 77 (7) 81 (10) 0.111 84 (15) 79 (7) 81 (12) 0.44
Mecarbam 79 (12) 92 (13) 85 (14) 0.098 84 (4) 88 (4) 86 (5) 0.078 81 (11) 88 (8) 85 (10) 0.289 82 (19) 89 (8) 86 (14) 0.424
Mepanipyrim 86 (18) 92 (11) 89 (14) 0.189 85 (18) 100 (13) 92 (17) 0.062 77 (15) 78 (8) 78 (12) 0.622 86 (18) 80 (8) 83 (14) 0.374
Metalaxyl 116 (8) 117 (18) 117 (14) 0.905 114 (16) 110 (15) 112 (15) 0.252 96 (8) 92 (14) 94 (11) 0.249 94 (11) 84 (17) 89 (15) 0.188
Metconazole 320 (136) 123 (17) 222 (141) 0.000 97 (13) 86 (14) 91 (14) 0.078 85 (9) 77 (13) 81 (12) 0.264 80 (6) 72 (15) 76 (12) 0.186
Methamidophos 84 (17) 73 (15) 79 (17) 0.191 83 (12) 90 (17) 86 (15) 0.294 72 (8) 79 (12) 76 (11) 0.064 81 (12) 93 (10) 87 (13) 0.102
Methidathion 17 (422) 17 (422) 17 (406) n.f.r.b 88 (16) 76 (5) 82 (14) 0.057 84 (4) 84 (6) 84 (5) 0.811 75 (15) 76 (15) 76 (14) 0.853
Methiocarb 87 (20) 85 (3) 86 (14) 0.751 88 (14) 99 (19) 93 (17) 0.152 81 (8) 88 (9) 84 (9) 0.098 80 (12) 88 (9) 84 (11) 0.113
Methomyl 90 (11) 81 (7) 85 (11) 0.136 89 (9) 81 (8) 85 (10) 0.066 88 (4) 80 (12) 84 (10) 0.071 85 (13) 74 (5) 80 (13) 0.066
Methoxyfenozide 99 (15) 103 (7) 101 (11) 0.601 91 (9) 109 (18) 100 (17) 0.060 89 (8) 79 (12) 84 (12) 0.140 90 (14) 78 (12) 84 (15) 0.109
Monocrotophos 85 (12) 73 (18) 79 (16) 0.159 90 (9) 77 (15) 84 (14) 0.090 87 (4) 81 (15) 84 (11) 0.263 91 (19) 81 (8) 86 (16) 0.181
Myclobutanil 96 (18) 81 (11) 88 (17) 0.129 92 (7) 81 (12) 86 (12) 0.077 88 (2) 82 (18) 85 (12) 0.350 84 (9) 74 (14) 79 (13) 0.111
Nitenpyram −267 (0) −78 (−35) −173 (−58) 0.000 −134 (0) −20 (−145) −77 (−81) 0.000 100 (19) 99 (7) 100 (14) 0.933 92 (19) 98 (9) 95 (15) 0.200
Ochratoxin A 53 (0) 53 (0) 53 (0) n.f.r. 39 (15) 40 (4) 39 (10) 0.772 106 (19) 109 (8) 107 (14) 0.686 81 (18) 89 (5) 85 (13) 0.220
Ofurace 99 (13) 93 (17) 96 (15) 0.244 90 (12) 76 (11) 83 (14) 0.067 89 (8) 82 (17) 85 (13) 0.300 99 (9) 88 (18) 93 (15) 0.171
Omethoate 102 (7) 98 (19) 100 (14) 0.629 84 (4) 80 (20) 82 (14) 0.466 79 (8) 76 (12) 78 (10) 0.194 84 (13) 73 (8) 78 (13) 0.057
Oxadixyl 93 (16) 81 (9) 87 (15) 0.109 91 (13) 80 (13) 86 (14) 0.115 87 (7) 80 (10) 83 (9) 0.055 88 (8) 84 (11) 86 (10) 0.266
Oxamyl 96 (12) 82 (12) 89 (14) 0.098 94 (8) 89 (14) 92 (11) 0.328 89 (3) 83 (11) 86 (8) 0.120 93 (6) 89 (11) 91 (9) 0.389
Paclobutrazol 109 (15) 100 (19) 105 (17) 0.354 99 (12) 92 (14) 96 (13) 0.429 89 (5) 83 (13) 86 (10) 0.102 83 (5) 75 (13) 79 (11) 0.053
Penconazole 94 (14) 77 (19) 86 (18) 0.071 85 (9) 79 (11) 82 (10) 0.127 85 (8) 74 (17) 80 (14) 0.080 79 (12) 70 (6) 75 (11) 0.086
Pencycuron 83 (14) 87 (8) 85 (11) 0.511 89 (15) 102 (13) 95 (15) 0.075 87 (14) 94 (4) 90 (10) 0.192 88 (13) 93 (4) 91 (9) 0.352
Pendimethalin 83 (19) 79 (5) 81 (14) 0.588 72 (11) 71 (3) 72 (8) 0.630 82 (17) 78 (15) 80 (15) 0.544 88 (6) 79 (15) 83 (12) 0.165
Phenothrin n.f.r.b 49 (72) n.f.r.b n.f.r.b 87 (12) 88 (6) 87 (9) 0.774 81 (18) 97 (16) 89 (18) 0.133 91 (6) 98 (16) 95 (12) 0.315
Phenthoate 91 (15) 95 (15) 93 (15) 0.520 85 (9) 91 (16) 88 (13) 0.195 85 (11) 81 (11) 83 (11) 0.412 84 (15) 83 (11) 83 (13) 0.862
Phosalone 43 (113) 15 (215) 29 (146) 0.000 115 (12) 105 (18) 110 (15) 0.390 93 (8) 85 (14) 89 (12) 0.219 81 (20) 88 (13) 85 (17) 0.433
Phosmet 84 (17) 102 (14) 93 (18) 0.080 92 (10) 99 (13) 96 (12) 0.293 80 (19) 83 (12) 81 (15) 0.655 84 (15) 84 (12) 84 (13) 0.968
Picoxystrobin 103 (11) 110 (13) 106 (12) 0.201 87 (8) 89 (7) 88 (7) 0.617 84 (10) 82 (4) 83 (7) 0.311 86 (17) 81 (4) 84 (13) 0.403
Piperonyl butoxide 94 (11) 103 (11) 98 (12) 0.129 88 (8) 96 (9) 92 (9) 0.067 84 (7) 76 (9) 80 (9) 0.063 83 (14) 76 (9) 79 (12) 0.202
Pirimicarb 94 (11) 87 (9) 90 (11) 0.067 93 (7) 82 (9) 88 (10) 0.06 89 (3) 82 (11) 86 (8) 0.090 85 (3) 82 (14) 83 (10) 0.458
Pirimiphos-ethyl 94 (12) 84 (10) 89 (12) 0.128 89 (4) 81 (9) 85 (8) 0.077 87 (1) 77 (15) 82 (12) 0.057 83 (9) 77 (16) 80 (13) 0.269
Pirimiphos-methyl 95 (13) 96 (19) 96 (16) 0.926 92 (4) 80 (19) 86 (14) 0.091 87 (3) 77 (13) 82 (11) 0.051 84 (10) 73 (11) 79 (12) 0.070
Prochloraz 78 (11) 93 (14) 86 (15) 0.053 79 (9) 90 (13) 85 (13) 0.103 76 (9) 81 (4) 78 (7) 0.211 72 (13) 80 (4) 76 (11) 0.103
Profenofos 93 (11) 83 (8) 88 (11) 0.096 83 (14) 105 (17) 94 (19) 0.058 77 (19) 71 (7) 74 (15) 0.273 77 (16) 72 (7) 75 (12) 0.299
Prometryn 89 (13) 80 (4) 85 (11) 0.082 89 (5) 83 (11) 86 (9) 0.079 85 (2) 80 (12) 82 (9) 0.284 82 (6) 78 (13) 80 (10) 0.274
Propamocarb 262 (7) 218 (4) 240 (11) 0.000 212 (4) 171 (5) 191 (12) 0.000 181 (2) 157 (16) 169 (13) 0.059 176 (9) 147 (6) 162 (12) 0.002
Propanil 50 (193) 28 (252) 39 (210) 1.000 104 (41) 75 (81) 89 (59) 0.368 102 (13) 97 (13) 99 (13) 0.597 85 (17) 102 (13) 93 (17) 0.059
Propham 96 (11) 102 (11) 99 (11) 0.340 102 (12) 105 (5) 104 (9) 0.567 93 (17) 94 (8) 94 (13) 0.963 94 (12) 95 (8) 95 (10) 0.840
Propiconazole 89 (10) 76 (19) 82 (16) 0.152 84 (14) 65 (14) 74 (19) 0.025 79 (8) 70 (17) 74 (13) 0.150 83 (10) 75 (17) 79 (14) 0.136
Propyzamide 88 (17) 82 (19) 85 (18) 0.597 90 (10) 82 (16) 86 (14) 0.342 88 (18) 76 (16) 82 (18) 0.247 82 (15) 75 (15) 78 (15) 0.104
Pyraclostrobin 98 (13) 109 (9) 104 (12) 0.062 95 (13) 102 (2) 98 (9) 0.201 76 (11) 82 (7) 79 (9) 0.069 84 (6) 83 (7) 84 (6) 0.643
Pyrazophos 103 (12) 112 (8) 107 (11) 0.097 92 (15) 101 (2) 96 (11) 0.151 82 (14) 78 (5) 80 (11) 0.384 83 (18) 78 (5) 81 (14) 0.410
Pyridaben 91 (16) 79 (19) 85 (18) 0.223 78 (12) 86 (11) 82 (12) 0.101 73 (15) 71 (5) 72 (11) 0.711 78 (17) 71 (5) 74 (13) 0.190
Pyrimethanil 84 (13) 77 (10) 81 (12) 0.293 80 (6) 73 (11) 77 (9) 0.099 77 (3) 71 (13) 74 (10) 0.071 73 (11) 70 (18) 71 (14) 0.622
Pyriproxyfen 87 (12) 96 (7) 91 (10) 0.137 82 (8) 83 (11) 82 (9) 0.862 79 (8) 78 (13) 79 (10) 0.869 82 (4) 78 (13) 80 (9) 0.371
Quinalphos 86 (20) 76 (15) 81 (18) 0.241 83 (20) 75 (9) 79 (16) 0.341 81 (9) 87 (9) 84 (9) 0.223 90 (7) 87 (9) 89 (8) 0.452
Quinoxyfen 97 (15) 108 (4) 102 (12) 0.100 87 (11) 97 (11) 92 (12) 0.146 83 (15) 70 (4) 77 (14) 0.055 73 (6) 69 (4) 71 (6) 0.198
Simazine 88 (18) 77 (12) 82 (16) 0.289 89 (10) 75 (16) 82 (15) 0.076 90 (7) 81 (15) 86 (12) 0.157 87 (2) 81 (8) 84 (7) 0.082
Spinosyn A 79 (16) 74 (13) 77 (14) 0.408 72 (8) 72 (4) 72 (6) 0.748 71 (6) 73 (2) 72 (5) 0.221 74 (6) 72 (14) 73 (10) 0.646
Spinosyn D 70 (16) 74 (19) 72 (17) 0.502 78 (18) 84 (6) 81 (13) 0.348 70 (9) 74 (10) 72 (10) 0.394 72 (6) 74 (10) 73 (8) 0.442
Spirodiclofen 77 (53) 66 (23) 71 (42) 0.517 72 (36) 81 (17) 77 (27) 0.395 79 (18) 78 (16) 78 (17) 0.896 84 (7) 79 (16) 81 (12) 0.270
Spiromesifen 98 (7) 97 (19) 97 (14) 0.877 101 (17) 99 (16) 100 (16) 0.798 85 (11) 96 (19) 90 (16) 0.213 107 (17) 96 (19) 102 (18) 0.248
Spiroxamine 89 (11) 81 (10) 85 (11) 0.212 83 (4) 78 (8) 81 (7) 0.087 82 (2) 77 (11) 80 (8) 0.123 81 (2) 77 (19) 79 (13) 0.588
Tau-fluvalinate 64 (114) 334 (52) 199 (95) 0.000 112 (63) 247 (33) 180 (56) 0.000 76 (30) 123 (17) 100 (33) 0.010 85 (15) 85 (12) 85 (13) 0.999
Tebuconazole 97 (12) 85 (13) 91 (14) 0.068 79 (13) 89 (4) 84 (11) 0.089 85 (3) 81 (1) 83 (3) 0.017 83 (7) 76 (19) 79 (14) 0.324
Tebufenozide 115 (29) 143 (3) 129 (21) 0.056 111 (5) 107 (2) 109 (4) 0.276 101 (5) 93 (16) 97 (12) 0.251 95 (9) 83 (11) 89 (12) 0.051
Tebufenpyrad 94 (18) 106 (7) 100 (14) 0.133 87 (12) 92 (1) 89 (9) 0.320 83 (13) 71 (7) 77 (13) 0.074 80 (16) 71 (7) 75 (14) 0.081
Terbutryn 91 (11) 81 (13) 86 (13) 0.142 88 (4) 81 (10) 85 (8) 0.069 85 (2) 80 (12) 83 (8) 0.167 82 (6) 77 (9) 80 (8) 0.157
Tetrachlorvinphos 94 (9) 90 (18) 92 (14) 0.473 91 (32) 57 (31) 74 (39) 0.039 86 (12) 89 (13) 88 (12) 0.472 98 (16) 89 (13) 94 (15) 0.302
Tetraconazole 97 (14) 81 (14) 89 (17) 0.067 85 (10) 73 (14) 79 (14) 0.078 93 (11) 91 (13) 92 (12) 0.61 84 (10) 81 (14) 82 (12) 0.354
Tetramethrin 98 (12) 90 (20) 94 (16) 0.309 84 (13) 95 (8) 90 (12) 0.113 86 (4) 81 (13) 83 (10) 0.312 84 (15) 80 (13) 82 (14) 0.548
Thiabendazole 45 (16) 39 (8) 42 (15) 0.070 38 (4) 36 (8) 37 (7) 0.144 37 (4) 39 (17) 38 (12) 0.348 38 (8) 38 (12) 38 (10) 0.952
Thiacloprid 88 (16) 76 (8) 82 (15) 0.085 81 (14) 70 (12) 76 (15) 0.059 78 (14) 74 (26) 76 (20) 0.526 82 (15) 71 (13) 76 (15) 0.222
Thiamethoxam 139 (24) 42 (35) 90 (63) 0.000 118 (42) 71 (24) 94 (46) 0.091 104 (28) 96 (33) 100 (30) 0.155 100 (7) 89 (17) 95 (13) 0.177
Thiodicarb 97 (13) 81 (13) 89 (16) 0.103 89 (11) 82 (19) 85 (15) 0.381 84 (8) 74 (16) 79 (13) 0.101 86 (7) 77 (19) 81 (14) 0.176
Toxin T2 n.f.r. 486 (52) n.f.r. n.f.r. 946 (27) 729 (30) 838 (31) 0.000 82 (14) 73 (8) 78 (12) 0.101 98 (7) 88 (17) 93 (13) 0.135
Triadimefon 102 (17) 86 (2) 94 (16) 0.067 90 (8) 82 (16) 86 (13) 0.236 85 (12) 75 (12) 80 (13) 0.170 85 (5) 79 (20) 82 (14) 0.364
Triadimenol 142 (186) −604 (−4) −231 (−185) 0.000 66 (106) n.f.r.b n.f.r.b n.f.r.b n.f.r.b −89 (−15) n.f.r.b n.f.r.b 41 (62) −53 (−18) −6 (−829) 0.000
Triazophos 91 (12) 98 (20) 94 (16) 0.215 88 (8) 85 (7) 87 (7) 0.429 86 (9) 87 (9) 86 (9) 0.747 91 (6) 86 (9) 89 (8) 0.365
Trifloxystrobin 86 (11) 86 (8) 86 (9) 0.954 84 (17) 83 (16) 84 (16) 0.859 77 (11) 73 (6) 75 (9) 0.270 87 (9) 83 (9) 85 (9) 0.080
Triflumizole 91 (12) 78 (14) 84 (15) 0.074 83 (5) 73 (18) 78 (14) 0.119 83 (4) 85 (15) 84 (10) 0.606 81 (5) 77 (20) 79 (14) 0.517
Triticonazole 92 (16) 96 (11) 94 (13) 0.532 94 (9) 106 (9) 100 (10) 0.056 85 (7) 90 (4) 88 (7) 0.055 91 (13) 90 (4) 91 (9) 0.936
Zearalenone −5131 (0) −5131 (0) −5131 (0) n.f.r. 105 (11) 86 (44) 96 (30) 0.225 107 (8) 112 (19) 109 (14) 0.554 93 (19) 88 (19) 91 (18) 0.636
Zoxamide 86 (16) 93 (15) 90 (15) 0.388 84 (14) 71 (19) 77 (18) 0.174 81 (16) 77 (8) 79 (13) 0.440 87 (10) 80 (11) 84 (11) 0.237


Table 4 Average recoveries, precision (RSDr) and intermediate precision (RSDWR) obtained for M. sylvestris from the method validation procedure
Concentration 1 Concentration 2 Concentration 3 Concentration 4
Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value Average recovery (%) (RSDr (%)) (n = 7) Average recovery (%) (RSDWR (%)) (n = 14) P value
Analyst 1 Analyst 2 Analyst 1 Analyst 2 Analyst 1 Analyst 2 Analyst 1 Analyst 2
a Mycotoxins. b n.f.r.: not fulfill requirements of SANTE document.
Acephate 76 (20) 84 (9) 80 (15) 0.164 84 (13) 101 (12) 93 (15) 0.061 86 (16) 90 (13) 88 (14) 0.619 94 (17) 108 (10) 101 (15) 0.063
Acetamiprid 107 (9) 102 (5) 105 (7) 0.273 94 (6) 89 (11) 92 (9) 0.396 86 (17) 78 (5) 82 (14) 0.295 95 (11) 98 (2) 97 (8) 0.367
Acetochlor 106 (17) 95 (11) 100 (15) 0.127 99 (8) 98 (16) 99 (12) 0.811 87 (6) 83 (9) 85 (8) 0.371 99 (5) 97 (10) 98 (8) 0.446
Aflatoxin B1 51 (21) 84 (15) 67 (31) 0.001 76 (8) 71 (19) 73 (14) 0.353 88 (18) 76 (14) 82 (18) 0.237 95 (10) 91 (12) 93 (11) 0.403
Aflatoxin B2 −111 (-11) −120 (-20) −115 (-17) 0.438 9 (220) 8 (195) 8 (203) 0.883 57 (18) 62 (10) 59 (15) 0.167 75 (18) 75 (6) 75 (13) 0.985
Aflatoxin G1 66 (58) 83 (38) 75 (47) 0.191 78 (13) 84 (16) 81 (15) 0.223 96 (14) 85 (14) 90 (15) 0.143 84 (15) 85 (11) 85 (12) 0.832
Aflatoxin G2 n.f.r . 39 (228) n.f.r . n.f.r . 90 (20) 85 (11) 88 (16) 0.434 89 (19) 88 (7) 89 (14) 0.801 85 (11) 96 (11) 90 (12) 0.119
Aldicarb sulfone 90 (16) 93 (18) 91 (16) 0.726 90 (13) 84 (13) 87 (13) 0.416 99 (4) 98 (9) 98 (7) 0.728 103 (6) 111 (5) 107 (7) 0.063
Aldicarb sulfoxide 101 (17) 86 (20) 94 (20) 0.180 90 (13) 106 (13) 98 (15) 0.087 86 (16) 91 (19) 89 (17) 0.616 83 (5) 94 (13) 89 (12) 0.106
Atrazine 104 (13) 114 (8) 109 (11) 0.184 107 (12) 116 (3) 111 (9) 0.155 90 (10) 83 (2) 87 (8) 0.118 87 (10) 82 (2) 84 (7) 0.224
Azamethiphos 80 (16) 89 (14) 85 (16) 0.298 89 (20) 102 (6) 95 (15) 0.135 87 (19) 96 (3) 91 (14) 0.214 87 (12) 98 (3) 93 (10) 0.054
Azinphos-methyl 75 (49) 123 (57) 99 (60) 0.059 81 (51) 168 (19) 124 (46) 0.008 82 (17) 93 (18) 88 (18) 0.294 92 (14) 79 (19) 85 (18) 0.120
Azoxystrobin 95 (19) 110 (4) 103 (14) 0.089 93 (11) 102 (6) 98 (9) 0.063 90 (9) 98 (4) 94 (8) 0.054 93 (12) 96 (1) 94 (8) 0.509
Bifenazate 23 (48) −10 (−52) 6 (301) 0.000 42 (12) 11 (97) 26 (68) 0.000 56 (15) 16 (56) 36 (63) 0.000 56 (16) 19 (27) 38 (53) 0.000
Bitertanol 83 (18) 79 (11) 81 (15) 0.518 89 (19) 81 (12) 85 (17) 0.281 95 (16) 85 (9) 90 (14) 0.195 94 (16) 92 (5) 93 (11) 0.712
Boscalid 87 (10) 110 (24) 98 (23) 0.052 83 (11) 75 (14) 79 (13) 0.219 88 (8) 82 (13) 85 (11) 0.282 91 (15) 80 (6) 85 (13) 0.061
Bupirimate 102 (10) 96 (7) 99 (9) 0.224 98 (12) 89 (5) 93 (10) 0.119 93 (9) 93 (5) 93 (7) 0.907 93 (8) 88 (3) 91 (7) 0.143
Buprofezin 101 (15) 114 (5) 108 (12) 0.091 111 (15) 111 (5) 111 (11) 0.968 86 (9) 103 (24) 94 (20) 0.172 106 (16) 110 (3) 108 (11) 0.528
Cadusafos 100 (17) 112 (7) 106 (13) 0.133 96 (13) 107 (12) 102 (13) 0.254 103 (13) 113 (8) 108 (11) 0.081 103 (19) 116 (2) 109 (14) 0.136
Carbaryl 99 (18) 104 (6) 102 (13) 0.592 96 (11) 108 (7) 102 (10) 0.087 106 (15) 113 (3) 109 (10) 0.318 99 (11) 110 (5) 105 (10) 0.071
Carbendazim 65 (54) 48 (11) 57 (45) 0.263 53 (40) 75 (11) 64 (30) 0.067 62 (11) 90 (4) 76 (20) 0.000 82 (11) 91 (3) 86 (9) 0.060
Carbofuran 118 (11) 115 (5) 116 (8) 0.632 115 (5) 107 (10) 111 (8) 0.139 113 (10) 104 (5) 108 (9) 0.093 116 (13) 104 (2) 110 (11) 0.117
Carpropamid −40 (0) 34 (24) −3 (−1288) 0.000 108 (10) 92 (19) 100 (16) 0.050 88 (9) 75 (17) 81 (15) 0.133 100 (8) 97 (5) 98 (7) 0.211
Chlorantraniliprole 78 (52) 56 (26) 67 (47) 0.199 78 (20) 87 (19) 82 (19) 0.488 84 (10) 91 (13) 87 (12) 0.172 97 (12) 93 (9) 95 (10) 0.390
Chlorfenvinphos 97 (19) 102 (9) 100 (14) 0.599 92 (8) 100 (9) 96 (9) 0.066 89 (11) 80 (19) 84 (16) 0.340 93 (16) 108 (4) 101 (13) 0.074
Chlorpyrifos 112 (5) 101 (18) 107 (13) 0.174 102 (14) 103 (16) 102 (15) 0.915 83 (7) 90 (13) 87 (11) 0.116 81 (16) 81 (6) 81 (11) 0.995
Clofentezine 90 (20) 79 (16) 84 (19) 0.096 76 (12) 76 (18) 76 (15) 0.998 75 (11) 93 (18) 84 (19) 0.066 89 (19) 79 (19) 84 (19) 0.289
Clomazone 83 (20) 73 (13) 78 (18) 0.271 92 (6) 98 (8) 95 (7) 0.192 93 (10) 105 (14) 99 (13) 0.209 105 (9) 111 (12) 108 (11) 0.352
Clothianidin 109 (8) 95 (12) 102 (12) 0.051 101 (11) 88 (13) 94 (14) 0.055 92 (19) 78 (6) 85 (17) 0.049 89 (17) 84 (5) 87 (13) 0.419
Cyazofamid 76 (47) 41 (54) 59 (58) 0.136 91 (17) 93 (19) 92 (17) 0.746 96 (10) 105 (7) 101 (10) 0.091 99 (11) 107 (10) 103 (11) 0.277
Cyproconazole 92 (19) 94 (7) 93 (14) 0.866 94 (9) 103 (9) 99 (10) 0.101 90 (9) 90 (6) 90 (8) 0.946 94 (10) 88 (12) 91 (11) 0.310
Cyprodinil 75 (17) 71 (10) 73 (14) 0.469 71 (5) 73 (7) 72 (6) 0.401 70 (9) 72 (8) 71 (8) 0.678 71 (18) 78 (5) 75 (13) 0.142
Demeton-S-methyl sulfone 94 (17) 93 (6) 94 (13) 0.836 93 (9) 99 (4) 96 (7) 0.146 101 (10) 107 (5) 104 (8) 0.147 104 (8) 103 (4) 104 (6) 0.780
Demeton-S-methyl sulfoxide 77 (60) 79 (16) 78 (42) 0.913 87 (10) 102 (15) 95 (15) 0.128 89 (16) 105 (20) 97 (20) 0.118 96 (11) 107 (3) 102 (9) 0.074
Deoxynivalenol 202 (358) 1010 (67) 606 (131) 0.147 657 (68) 109 (283) 383 (122) 0.015 25 (11) 32 (14) 28 (18) 0.038 26 (8) 25 (9) 26 (9) 0.155
Diacetoxyscirpenol 2 (291) −4 (-167) −1 (-728) 0.036 16 (60) 17 (20) 16 (41) 0.699 23 (7) 23 (8) 23 (7) 0.547 22 (12) 25 (4) 24 (11) 0.038
Diazinon 98 (12) 108 (15) 103 (14) 0.330 99 (6) 107 (15) 103 (12) 0.226 108 (19) 113 (9) 111 (14) 0.509 93 (9) 108 (15) 100 (15) 0.106
Diethofencarb 82 (37) 39 (27) 61 (51) 0.013 109 (20) 98 (18) 104 (19) 0.140 89 (14) 95 (6) 92 (11) 0.357 100 (13) 94 (5) 97 (10) 0.155
Difenoconazol 91 (17) 81 (6) 86 (14) 0.109 94 (10) 96 (7) 95 (8) 0.594 89 (10) 100 (5) 94 (10) 0.063 105 (17) 101 (4) 103 (12) 0.641
Diflubenzuron 49 (168) 14 (560) 32 (253) 0.347 91 (44) 54 (92) 73 (66) 0.147 89 (11) 101 (13) 95 (13) 0.170 95 (14) 115 (19) 105 (19) 0.092
Dimethoate 101 (11) 100 (9) 101 (9) 0.831 93 (7) 98 (6) 95 (7) 0.161 88 (18) 92 (3) 90 (12) 0.464 89 (18) 91 (2) 90 (12) 0.816
Dimethomorph 93 (12) 106 (8) 100 (12) 0.125 102 (12) 110 (6) 106 (10) 0.197 91 (12) 87 (4) 89 (9) 0.398 94 (13) 86 (3) 90 (10) 0.189
Diniconazole 91 (13) 83 (14) 87 (14) 0.129 91 (16) 80 (7) 85 (14) 0.061 85 (8) 79 (9) 82 (9) 0.189 89 (10) 82 (11) 85 (11) 0.275
Diphenylamine 115 (13) 96 (15) 106 (16) 0.114 98 (11) 87 (10) 92 (12) 0.071 89 (11) 84 (8) 86 (10) 0.388 86 (10) 86 (8) 86 (9) 0.944
Diuron 86 (17) 74 (7) 80 (16) 0.096 90 (8) 93 (7) 91 (7) 0.248 92 (9) 102 (5) 97 (8) 0.055 90 (9) 89 (20) 90 (15) 0.850
DMST 86 (16) 100 (18) 93 (19) 0.110 105 (20) 97 (13) 101 (17) 0.532 97 (9) 98 (16) 97 (13) 0.963 94 (13) 82 (10) 88 (13) 0.088
Epoxiconazol 89 (5) 102 (17) 96 (14) 0.088 96 (10) 111 (14) 104 (14) 0.061 97 (6) 100 (15) 98 (12) 0.587 89 (15) 103 (9) 96 (14) 0.059
Ethion 87 (14) 108 (17) 98 (19) 0.051 92 (8) 104 (14) 98 (13) 0.063 89 (9) 96 (5) 93 (8) 0.155 88 (13) 94 (6) 91 (10) 0.170
Ethiprole 86 (14) 79 (19) 82 (16) 0.393 102 (12) 86 (17) 94 (16) 0.093 95 (6) 97 (17) 96 (13) 0.735 102 (14) 103 (5) 103 (10) 0.827
Ethoprophos 98 (16) 112 (9) 105 (14) 0.213 87 (13) 86 (8) 87 (10) 0.952 88 (9) 81 (20) 84 (15) 0.427 98 (10) 106 (10) 102 (11) 0.200
Etofenprox 95 (19) 87 (20) 91 (19) 0.478 107 (18) 98 (20) 103 (19) 0.452 86 (9) 80 (15) 83 (13) 0.366 85 (15) 87 (6) 86 (11) 0.821
Etoxazole 92 (16) 88 (3) 90 (11) 0.464 89 (9) 86 (5) 87 (7) 0.177 86 (11) 88 (2) 87 (8) 0.572 87 (6) 87 (3) 87 (4) 0.817
Fenamidone 97 (12) 108 (8) 102 (11) 0.111 100 (7) 97 (20) 98 (14) 0.761 93 (11) 92 (13) 93 (12) 0.689 91 (11) 86 (4) 88 (9) 0.164
Fenamiphos 105 (12) 98 (11) 102 (11) 0.352 91 (13) 91 (5) 91 (9) 0.948 87 (10) 91 (3) 89 (8) 0.475 90 (14) 92 (2) 91 (9) 0.654
Fenarimol 76 (35) 48 (24) 62 (39) 0.097 89 (11) 102 (15) 96 (15) 0.118 76 (19) 74 (10) 75 (15) 0.739 89 (16) 80 (10) 85 (15) 0.117
Fenazaquin 89 (18) 84 (7) 86 (14) 0.499 89 (16) 94 (7) 91 (12) 0.384 84 (14) 93 (3) 88 (11) 0.062 83 (15) 91 (2) 87 (11) 0.161
Fenbuconazol 65 (27) 40 (47) 53 (42) 0.025 90 (19) 110 (16) 100 (20) 0.158 98 (19) 106 (11) 102 (15) 0.403 98 (6) 99 (21) 98 (15) 0.908
Fenhexamid 81 (34) 78 (20) 79 (27) 0.854 95 (15) 94 (19) 94 (16) 0.910 93 (10) 103 (13) 98 (13) 0.099 99 (14) 104 (15) 102 (15) 0.684
Fenobucarb 89 (20) 103 (7) 96 (16) 0.116 99 (13) 111 (9) 105 (12) 0.107 91 (10) 106 (16) 98 (15) 0.084 101 (7) 113 (13) 107 (12) 0.074
Fenoxycarb 72 (55) 52 (0) 62 (47) 0.231 81 (19) 73 (14) 77 (17) 0.191 86 (15) 79 (18) 82 (16) 0.457 94 (13) 84 (19) 89 (17) 0.259
Fenpropimorph 100 (13) 107 (7) 103 (11) 0.341 96 (6) 105 (12) 100 (11) 0.139 93 (5) 96 (4) 94 (5) 0.401 86 (11) 95 (2) 90 (9) 0.068
Fenpyroximate 85 (17) 93 (4) 89 (12) 0.252 83 (11) 94 (8) 88 (11) 0.058 85 (15) 95 (5) 90 (12) 0.151 85 (7) 91 (9) 88 (9) 0.174
Fensulfothion 104 (13) 101 (19) 103 (16) 0.752 100 (14) 99 (9) 100 (12) 0.871 113 (14) 101 (11) 107 (14) 0.079 119 (5) 111 (6) 115 (7) 0.068
Fluazifop-butyl 89 (13) 99 (10) 94 (12) 0.117 87 (9) 99 (9) 93 (11) 0.066 88 (10) 93 (18) 90 (14) 0.361 87 (12) 98 (14) 93 (14) 0.195
Fludioxonil 108 (14) 92 (15) 100 (16) 0.085 90 (18) 89 (15) 89 (16) 0.817 97 (11) 98 (12) 97 (11) 0.853 95 (9) 95 (8) 95 (8) 0.992
Flufenoxuron −22 (0) 57 (34) 18 (245) 0.000 105 (17) 101 (12) 103 (15) 0.522 78 (11) 79 (12) 78 (11) 0.911 96 (14) 98 (19) 97 (16) 0.833
Fluquinconazol 89 (53) 65 (40) 77 (51) 0.308 94 (15) 94 (20) 94 (17) 0.968 93 (17) 89 (17) 91 (16) 0.715 94 (14) 86 (12) 90 (14) 0.125
Flusilazol 84 (19) 104 (15) 94 (20) 0.055 94 (18) 104 (10) 99 (15) 0.172 88 (8) 78 (10) 83 (11) 0.057 96 (10) 85 (14) 91 (13) 0.157
Flutolanil 56 (39) 25 (22) 41 (54) 0.016 81 (19) 99 (18) 90 (20) 0.106 85 (13) 80 (17) 82 (15) 0.502 97 (18) 84 (16) 91 (19) 0.066
Flutriafol 99 (16) 87 (9) 93 (15) 0.118 93 (9) 84 (12) 89 (11) 0.122 87 (11) 90 (5) 88 (8) 0.509 91 (15) 82 (7) 87 (13) 0.223
Fosthiazate 105 (15) 95 (7) 100 (12) 0.172 98 (6) 94 (10) 96 (8) 0.269 89 (13) 90 (4) 89 (9) 0.788 91 (13) 89 (4) 90 (9) 0.722
Fumonisin B1 156 (2) 163 (14) 159 (10) 0.490 72 (17) 61 (0) 67 (15) 0.047 49 (39) 30 (1) 40 (41) 0.044 23 (31) 15 (1) 19 (32) 0.030
Fumonisin B2 186 (4) 186 (1) 186 (3) 0.996 86 (8) 72 (1) 79 (11) 0.002 51 (8) 36 (0) 44 (19) 0.000 26 (28) 18 (1) 22 (29) 0.032
Furalaxyl 81 (33) 124 (5) 102 (28) 0.003 79 (14) 131 (4) 105 (27) 0.000 83 (10) 89 (2) 86 (8) 0.146 95 (11) 89 (2) 92 (9) 0.154
Furathiocarb 92 (19) 108 (6) 100 (15) 0.118 92 (9) 103 (10) 97 (11) 0.151 88 (9) 100 (13) 94 (13) 0.072 87 (12) 98 (11) 93 (12) 0.086
Halofenozide −177 (0) −177 (0) −177 (0) n.f.r.b −88 (0) 127 (34) 19 (603) 0.000 91 (20) 103 (20) 97 (20) 0.161 103 (15) 97 (20) 100 (17) 0.544
Haloxyfop-2-ethoxyethyl 87 (18) 92 (12) 89 (15) 0.464 87 (10) 91 (9) 89 (9) 0.312 86 (7) 98 (11) 92 (11) 0.072 93 (8) 102 (8) 97 (9) 0.151
Hexaconazol 97 (15) 95 (12) 96 (13) 0.677 97 (6) 93 (13) 95 (10) 0.464 90 (12) 85 (6) 88 (9) 0.393 86 (10) 84 (8) 85 (9) 0.670
Hexytiazox 100 (18) 81 (17) 91 (20) 0.059 90 (15) 87 (19) 88 (16) 0.712 86 (8) 83 (9) 85 (8) 0.507 86 (14) 92 (9) 89 (12) 0.327
Imazalil 96 (18) 83 (5) 89 (16) 0.101 83 (9) 88 (8) 85 (9) 0.337 85 (9) 93 (5) 89 (9) 0.087 86 (9) 89 (4) 87 (7) 0.530
Imazapic 111 (7) 75 (10) 93 (22) 0.000 91 (8) 82 (16) 87 (13) 0.083 86 (20) 71 (10) 78 (19) 0.114 81 (18) 74 (6) 77 (14) 0.239
Imazetapyr 94 (14) 86 (12) 90 (13) 0.118 84 (5) 89 (8) 86 (7) 0.119 72 (17) 79 (4) 76 (12) 0.220 78 (16) 79 (3) 78 (11) 0.844
Imidacloprid 100 (13) 92 (15) 96 (14) 0.428 101 (18) 88 (12) 95 (17) 0.058 99 (8) 89 (14) 94 (12) 0.062 89 (19) 92 (21) 91 (19) 0.807
Indoxacarb 82 (17) 102 (18) 92 (21) 0.091 87 (12) 90 (14) 89 (12) 0.543 93 (14) 107 (18) 100 (17) 0.054 101 (8) 109 (8) 105 (9) 0.124
Iprovalicarb 72 (13) 76 (14) 74 (13) 0.381 79 (15) 92 (10) 86 (14) 0.050 81 (11) 97 (10) 89 (13) 0.055 94 (15) 101 (1) 98 (11) 0.223
Isoxaflutole 281 (110) 203 (94) 242 (103) 0.324 168 (35) 225 (85) 196 (71) 0.474 96 (18) 106 (21) 101 (19) 0.076 100 (15) 92 (10) 96 (13) 0.392
Kresoxim-methyl 86 (17) 93 (19) 89 (18) 0.468 92 (13) 95 (17) 94 (15) 0.646 100 (19) 117 (6) 108 (15) 0.067 96 (11) 109 (7) 103 (11) 0.069
Linuron −14 (0) 55 (29) 21 (183) 0.000 93 (13) 101 (16) 97 (15) 0.187 118 (12) 119 (7) 119 (9) 0.803 113 (10) 116 (10) 114 (10) 0.636
Lufenuron 86 (20) 97 (11) 91 (17) 0.169 93 (15) 84 (17) 89 (16) 0.130 81 (14) 81 (9) 81 (11) 0.931 92 (11) 84 (6) 88 (10) 0.124
Malathion 103 (15) 104 (12) 104 (13) 0.962 81 (13) 91 (14) 86 (14) 0.200 84 (6) 79 (17) 82 (12) 0.378 106 (8) 114 (5) 110 (8) 0.148
Mecarban 91 (19) 89 (14) 90 (16) 0.732 98 (11) 87 (14) 92 (14) 0.103 93 (12) 101 (11) 97 (12) 0.096 99 (7) 100 (9) 100 (7) 0.741
Mepanipyrin 56 (44) 186 (31) 121 (66) 0.002 59 (31) 78 (40) 69 (39) 0.147 77 (13) 77 (14) 77 (13) 0.919 91 (7) 101 (10) 96 (10) 0.101
Metalaxyl 109 (11) 100 (4) 105 (9) 0.111 96 (5) 94 (6) 95 (5) 0.438 89 (15) 88 (2) 88 (11) 0.850 88 (13) 87 (2) 88 (9) 0.857
Metconazol 92 (20) 110 (8) 101 (16) 0.102 90 (15) 103 (5) 96 (13) 0.060 86 (18) 96 (6) 91 (14) 0.134 88 (14) 97 (5) 92 (11) 0.131
Methamidophos 51 (107) 166 (79) 109 (104) 0.063 104 (15) 101 (20) 102 (17) 0.711 44 (18) 64 (11) 54 (24) 0.003 78 (17) 93 (14) 86 (17) 0.071
Methidathion −73 (−89) 65 (65) −4 (−2073) 0.005 92 (18) 97 (17) 94 (17) 0.616 89 (18) 84 (15) 86 (16) 0.309 104 (13) 113 (10) 109 (12) 0.212
Methiocarb 56 (43) 17 (62) 37 (74) 0.005 112 (17) 113 (13) 112 (15) 0.957 86 (9) 78 (8) 82 (10) 0.073 98 (13) 103 (16) 100 (14) 0.563
Methomyl 103 (13) 113 (7) 108 (11) 0.146 100 (14) 104 (13) 102 (13) 0.679 97 (19) 107 (18) 102 (19) 0.119 102 (10) 105 (19) 103 (15) 0.841
Methoxyfenozide 89 (31) 164 (8) 127 (35) 0.001 89 (17) 105 (18) 97 (19) 0.089 85 (13) 86 (19) 85 (16) 0.748 98 (9) 107 (14) 103 (13) 0.274
Monocrotophos 94 (13) 104 (11) 99 (13) 0.241 75 (14) 87 (17) 81 (17) 0.077 91 (13) 99 (8) 95 (11) 0.133 89 (10) 96 (7) 93 (9) 0.143
Myclobutanil 99 (17) 82 (10) 91 (17) 0.060 103 (6) 92 (15) 98 (12) 0.130 96 (15) 112 (8) 104 (14) 0.075 91 (12) 91 (4) 91 (9) 0.895
Nitenpyran 290 (41) 871 (28) 580 (61) 0.002 141 (92) 666 (37) 404 (82) 0.002 93 (47) 244 (46) 169 (67) 0.011 109 (14) 187 (70) 148 (66) 0.183
Ochratoxin A 101 (8) 109 (4) 105 (7) 0.106 70 (11) 69 (15) 70 (13) 0.760 81 (14) 73 (8) 77 (12) 0.137 70 (5) 71 (10) 70 (7) 0.648
Ofurace 97 (19) 95 (13) 96 (16) 0.783 92 (9) 85 (3) 88 (8) 0.059 91 (17) 77 (5) 84 (15) 0.079 90 (12) 81 (5) 85 (11) 0.127
Omethoate 980 (72) 697 (58) 839 (68) 0.377 210 (83) 739 (16) 475 (65) 0.001 96 (20) 107 (19) 102 (20) 0.228 89 (4) 84 (18) 86 (13) 0.447
Oxadixyl 90 (17) 83 (5) 86 (13) 0.318 88 (7) 88 (8) 88 (7) 0.945 90 (17) 93 (1) 92 (12) 0.639 94 (11) 92 (3) 93 (8) 0.666
Oxamyl 91 (16) 80 (6) 85 (14) 0.086 82 (14) 88 (9) 85 (12) 0.337 84 (5) 90 (12) 87 (9) 0.331 85 (10) 89 (4) 87 (7) 0.241
Paclobutrazol 105 (15) 119 (12) 112 (15) 0.163 98 (11) 111 (9) 105 (12) 0.054 96 (6) 107 (9) 102 (9) 0.063 93 (10) 108 (14) 100 (14) 0.063
Penconazol 92 (17) 102 (11) 97 (14) 0.086 90 (9) 92 (6) 91 (7) 0.715 92 (9) 96 (6) 94 (8) 0.303 88 (9) 98 (3) 93 (8) 0.073
Pencycuron 94 (17) 106 (11) 100 (15) 0.103 91 (10) 107 (13) 99 (14) 0.063 95 (11) 108 (12) 101 (13) 0.113 99 (7) 106 (4) 103 (6) 0.052
Pendimethalin 85 (18) 80 (18) 83 (17) 0.689 88 (11) 92 (11) 90 (11) 0.517 86 (9) 94 (6) 90 (9) 0.081 81 (7) 88 (13) 84 (11) 0.080
Phenothrin 113 (18) 107 (14) 110 (16) 0.548 97 (13) 113 (13) 105 (15) 0.082 83 (12) 90 (9) 86 (11) 0.154 88 (15) 82 (7) 85 (13) 0.339
Phenthoate 416 (266) n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b n.f.r.b 516 (207) 4543 (67) 2530 (120) 0.027 141 (216) n.f.r.b n.f.r.b n.f.r.b
Phosalone 86 (46) −67 (−205) 9 (1328) 0.029 100 (17) 106 (13) 103 (15) 0.510 86 (10) 98 (15) 92 (14) 0.057 93 (9) 105 (9) 99 (11) 0.052
Phosmet −79 (0) 31 (71) −24 (−247) 0.000 85 (17) 93 (16) 89 (16) 0.241 94 (15) 87 (4) 91 (12) 0.157 106 (13) 90 (15) 98 (16) 0.072
Picoxystrobin 101 (17) 115 (2) 108 (13) 0.068 90 (11) 102 (15) 96 (15) 0.176 95 (15) 104 (18) 99 (17) 0.419 107 (15) 112 (4) 109 (11) 0.467
Piperonyl butoxide 92 (16) 103 (6) 97 (13) 0.173 91 (8) 97 (9) 94 (9) 0.140 86 (8) 95 (11) 91 (10) 0.189 89 (10) 96 (12) 93 (11) 0.137
Pirimicarb 101 (12) 97 (5) 99 (9) 0.420 92 (5) 97 (8) 95 (7) 0.356 85 (15) 96 (4) 91 (12) 0.071 86 (11) 91 (8) 88 (10) 0.171
Pirimiphos-ethyl 98 (13) 104 (6) 101 (10) 0.405 97 (3) 99 (4) 98 (3) 0.245 92 (7) 99 (12) 95 (10) 0.070 104 (18) 101 (2) 103 (12) 0.650
Pirimiphos-methyl 102 (13) 104 (9) 103 (11) 0.761 97 (4) 105 (7) 101 (7) 0.011 99 (13) 110 (6) 104 (11) 0.135 91 (10) 105 (14) 98 (14) 0.097
Prochloraz 86 (19) 105 (9) 95 (17) 0.074 85 (8) 87 (7) 86 (7) 0.728 85 (10) 92 (4) 89 (8) 0.128 90 (10) 89 (5) 90 (8) 0.907
Profenofos 100 (19) 88 (12) 94 (17) 0.193 91 (17) 91 (18) 91 (17) 0.956 92 (6) 102 (9) 97 (9) 0.074 88 (14) 103 (11) 96 (14) 0.094
Prometryn 97 (12) 101 (4) 99 (9) 0.445 94 (7) 96 (3) 95 (5) 0.477 88 (8) 95 (2) 91 (7) 0.105 88 (10) 92 (2) 90 (7) 0.305
Propamocarb 44 (73) −4 (−707) 20 (197) 0.030 52 (39) 5 (74) 29 (99) 0.002 59 (16) 18 (8) 38 (58) 0.000 86 (19) 107 (15) 97 (20) 0.063
Propanil 71 (59) −80 (0) −5 (−1818) 0.000 67 (70) 73 (45) 70 (56) 0.811 105 (17) 95 (19) 100 (18) 0.306 86 (18) 80 (16) 83 (17) 0.491
Propham 77 (18) 88 (20) 82 (20) 0.269 84 (16) 90 (16) 87 (16) 0.475 96 (18) 89 (8) 92 (14) 0.188 103 (8) 89 (19) 96 (15) 0.157
Propiconazol 82 (15) 88 (13) 85 (14) 0.258 84 (11) 96 (17) 90 (16) 0.229 84 (10) 76 (5) 80 (10) 0.082 90 (7) 98 (14) 94 (12) 0.100
Propyzamide 93 (20) 102 (12) 98 (16) 0.361 84 (20) 102 (20) 93 (22) 0.196 92 (16) 79 (9) 85 (15) 0.055 100 (9) 110 (5) 105 (8) 0.056
Pyraclostrobin 88 (16) 71 (13) 79 (18) 0.056 88 (10) 93 (10) 91 (10) 0.375 83 (8) 94 (11) 89 (11) 0.132 93 (7) 97 (3) 95 (5) 0.127
Pyrazophos 275 (11) 296 (7) 286 (10) 0.097 236 (14) 257 (2) 246 (10) 0.151 205 (14) 195 (4) 200 (10) 0.384 205 (18) 193 (5) 199 (13) 0.410
Pyridaben 88 (18) 84 (10) 86 (14) 0.649 87 (5) 89 (5) 88 (5) 0.146 82 (7) 89 (8) 85 (9) 0.058 82 (9) 89 (8) 85 (10) 0.097
Pyrimethanil 85 (16) 73 (4) 79 (14) 0.064 78 (5) 77 (5) 78 (5) 0.367 77 (8) 73 (3) 75 (7) 0.161 78 (13) 74 (2) 76 (9) 0.475
Pyriproxyfen 96 (16) 88 (6) 92 (13) 0.331 90 (8) 91 (7) 90 (7) 0.569 82 (8) 91 (10) 87 (10) 0.114 85 (8) 92 (3) 88 (7) 0.089
Quinalphos 95 (19) 101 (16) 98 (17) 0.457 90 (12) 97 (17) 94 (15) 0.171 99 (17) 105 (8) 102 (13) 0.443 95 (8) 102 (7) 98 (8) 0.100
Quinoxyfen 95 (16) 89 (11) 92 (14) 0.483 81 (13) 93 (11) 87 (13) 0.087 83 (9) 88 (5) 85 (8) 0.147 80 (8) 84 (5) 82 (7) 0.252
Simazine 98 (15) 96 (10) 97 (12) 0.714 92 (9) 89 (9) 90 (9) 0.480 87 (14) 89 (3) 88 (10) 0.586 89 (13) 88 (3) 89 (9) 0.863
Spinosyn A 92 (16) 79 (14) 86 (16) 0.142 89 (8) 84 (7) 86 (8) 0.097 92 (10) 85 (3) 89 (8) 0.069 93 (9) 91 (5) 92 (7) 0.727
Spinosyn D 100 (17) 84 (16) 92 (19) 0.139 94 (10) 93 (13) 93 (11) 0.789 88 (6) 86 (5) 87 (6) 0.443 92 (11) 89 (5) 90 (9) 0.412
Spirodiclofen 78 (17) 86 (17) 82 (17) 0.324 80 (15) 99 (12) 90 (17) 0.055 91 (11) 99 (8) 95 (10) 0.206 93 (9) 98 (5) 95 (7) 0.169
Spiromesifen 74 (33) 83 (23) 79 (28) 0.359 78 (6) 91 (17) 85 (15) 0.127 80 (15) 77 (9) 78 (12) 0.675 88 (13) 78 (10) 83 (13) 0.152
Spiroxamine 104 (12) 97 (5) 101 (10) 0.208 97 (4) 100 (3) 98 (4) 0.067 91 (8) 96 (2) 93 (6) 0.153 89 (12) 96 (2) 92 (9) 0.179
Tau-fluvalinate 161 (41) 80 (119) 121 (74) 0.091 102 (10) 103 (5) 102 (8) 0.720 93 (17) 91 (16) 92 (16) 0.754 79 (20) 98 (16) 89 (20) 0.103
Tebuconazol 97 (17) 110 (6) 104 (13) 0.110 92 (23) 112 (7) 102 (18) 0.069 86 (7) 86 (20) 86 (15) 0.904 97 (8) 108 (19) 102 (15) 0.282
Tebufenozide 98 (12) 95 (9) 97 (10) 0.444 104 (5) 107 (17) 105 (12) 0.667 93 (8) 102 (7) 97 (8) 0.108 101 (5) 107 (4) 104 (5) 0.081
Tebufenpyrad 95 (18) 95 (12) 95 (15) 0.974 90 (15) 101 (11) 95 (14) 0.236 97 (15) 107 (6) 102 (12) 0.156 88 (10) 101 (7) 95 (11) 0.067
Terbutryn 100 (12) 101 (3) 100 (9) 0.746 94 (4) 95 (4) 95 (4) 0.465 88 (8) 94 (3) 91 (7) 0.090 86 (11) 92 (2) 89 (8) 0.202
Tetrachlorvinphos 77 (99) 72 (110) 74 (100) 0.858 68 (44) 64 (25) 66 (35) 0.759 82 (17) 83 (16) 83 (16) 0.912 82 (14) 78 (9) 80 (11) 0.384
Tetraconazol 100 (18) 115 (9) 108 (15) 0.106 100 (10) 112 (11) 106 (12) 0.158 97 (10) 110 (10) 103 (12) 0.104 91 (17) 83 (2) 87 (13) 0.223
Tetramethrin 97 (14) 97 (16) 97 (14) 0.969 90 (14) 104 (12) 97 (15) 0.124 83 (9) 92 (9) 88 (10) 0.091 88 (12) 100 (10) 94 (12) 0.068
Thiabendazol 26 (82) 37 (7) 31 (50) 0.226 33 (49) 58 (12) 45 (39) 0.009 43 (14) 65 (9) 54 (24) 0.001 57 (14) 68 (6) 62 (14) 0.012
Thiacloprid 96 (13) 88 (11) 92 (12) 0.157 89 (9) 90 (8) 90 (8) 0.762 84 (10) 92 (1) 88 (8) 0.059 96 (11) 90 (4) 93 (9) 0.135
Thiamethoxan 96 (21) 113 (4) 104 (16) 0.076 86 (13) 93 (17) 90 (15) 0.437 91 (6) 97 (10) 94 (9) 0.229 93 (9) 99 (10) 96 (10) 0.093
Thiodicarb 86 (14) 77 (6) 82 (12) 0.141 78 (9) 74 (5) 76 (8) 0.183 70 (9) 70 (5) 70 (7) 0.970 65 (13) 74 (20) 70 (18) 0.202
Thiophanate-methyl 40 (28) 23 (55) 32 (45) 0.044 54 (12) 37 (15) 46 (23) 0.002 72 (18) 85 (18) 78 (19) 0.097 73 (6) 72 (18) 72 (13) 0.935
Toxin T2 15 (40) 17 (47) 16 (43) 0.623 24 (25) 22 (19) 23 (22) 0.585 109 (4) 109 (6) 109 (5) 0.896 87 (3) 84 (3) 86 (3) 0.157
Triadimefon 97 (17) 83 (10) 90 (16) 0.129 97 (5) 104 (14) 100 (11) 0.325 90 (9) 91 (14) 91 (11) 0.945 92 (11) 105 (4) 99 (10) 0.052
Triadimenol 193 (92) −32 (−66) 80 (210) 0.018 96 (19) 73 (19) 84 (23) 0.071 93 (19) 98 (13) 95 (16) 0.587 96 (20) 77 (11) 86 (20) 0.075
Triazophos 90 (16) 103 (7) 97 (13) 0.094 82 (17) 77 (7) 80 (13) 0.449 90 (14) 88 (18) 89 (15) 0.832 108 (13) 97 (5) 102 (11) 0.065
Trifloxystrobin 89 (19) 84 (10) 86 (15) 0.497 98 (10) 89 (16) 94 (14) 0.104 88 (7) 98 (15) 93 (13) 0.081 94 (7) 95 (12) 94 (10) 0.818
Triflumizole 97 (18) 92 (4) 95 (13) 0.554 94 (9) 92 (7) 93 (8) 0.527 86 (7) 93 (5) 89 (7) 0.122 89 (7) 96 (4) 92 (7) 0.097
Triticonazole 90 (20) 104 (16) 97 (19) 0.113 89 (11) 82 (6) 85 (10) 0.121 83 (9) 83 (7) 83 (8) 0.987 91 (12) 84 (5) 87 (10) 0.138
Zearalenone 45 (109) −180 (-45) −67 (-198) 0.001 23 (123) −17 (-50) 3 (975) 0.011 29 (8) 1 (577) 15 (101) 0.000 22 (12) 8 (22) 15 (49) 0.000
Zoxamide 86 (17) 96 (11) 91 (15) 0.092 92 (9) 95 (8) 93 (8) 0.584 89 (13) 95 (12) 92 (13) 0.129 94 (7) 96 (5) 95 (6) 0.475


For all pesticides and mycotoxins, the criterion for linearity was r2 ≥ 0.99 and the deviation of back-calculated concentration to be within ± 20% of the assigned concentration. If this value was not achieved, the t-test was applied to r2 to prove linearity. If the value of tr for analytical curve regression was greater than or equal to the critical (tabulated) bilateral t-value, for a confidence level of 95% and (Nx – 2) degrees of freedom, the range was considered linear, rejecting the null hypothesis H0: r = 0 (there is no correlation between x and y).

Although most pesticides presented a linear range of 5–1000 or 5–500 µg kg−1, 63% of analytes presented different linear ranges for M. officinalis and M. sylvestris, especially at the first analytical curve concentration. Mycotoxins of Group 1 presented a linear range of 5–500 µg kg−1 for all aflatoxins and 10–1000 µg kg−1 for ochratoxin A, while mycotoxins of Group 2 presented 250–5000 µg kg−1 for both fumonisins, deoxynivalenol, and diacetoxyscirpenol, 50–2500 µg kg−1 for toxin T2, and 25–500 µg kg−1 for zearalenone.

Method selectivity was evaluated in two different ways, in terms of the matrix effect calculated from the slope of the analytical curves obtained from solutions in a blank matrix extract and in organic solvent (at 1 ng mL−1 for pesticides and mycotoxins of group 1, and 50 ng mL−1 for mycotoxins of group 2). Afterwards, by comparing the selected chromatograms from the blank matrix extract and from solutions in organic solvent.

This evaluation verified the absence of analytes in the matrix by comparing the peak shape, ion ratio, and resolution in the solvent and matrix extract. These calculations and observations were performed automatically using the Mass Hunter Workstation Quantitative Analysis software, version 10.0. Fig. 3 presents an example of the selectivity obtained from the extracted chromatograms of aflatoxin B1 and fenamiphos.

Matrix effects can be described as an increase or decrease in the analytical signal due to co-extractives from the matrix when compared with the detection response for the analytes in organic solvent.51Table 1 presents the matrix effects for all analytes in M. officinalis and M. sylvestris.

Analytes with more polar characteristics presented a higher negative matrix effect. For instance, acephate presented a matrix effect of −74% and −80%, methamidophos −77% and −76%, and omethoate −76% and −76% for M. officinalis and M. sylvestris, respectively. Wu X and Ding Z52 demonstrated that early and late eluting pesticides were observed with strong signal suppression. The suppression effects of the initially eluting pesticides can be explained by the co-elution of polar coexisting compounds in the reversed-phase column, which can affect the ionization efficiency of the target analyte. Additionally, in the initial part of the chromatographic run, the low organic content may affect ESI ionization, leading to high signal suppression.53

Although more polar pesticides presented a similar matrix effect in both matrices, other compounds presented very different matrix effects in each medicinal plant. Fig. 4 shows the analytes with the highest dissimilar matrix effects. Log[thin space (1/6-em)]Kow of the analytes ranges from 0.5 to 7.02, indicating that both more polar and nonpolar analytes may experience different matrix effects in the two plants studied. For example, spirodiclofen showed a 24% signal enhancement in M. officinalis while it showed a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. No analyte had a matrix effect within the ± 20% range nor was the same matrix effect observed for an analyte in both matrices. Therefore, individual analytical curves for each matrix were used. Table 2 presents a summary of the analytes' matrix effect for M. officinalis and M. sylvestris.


image file: d4ay00599f-f4.tif
Fig. 4 Percentage of analytes presenting a matrix effect in the ranges of ± 20%, between ± 20% and ± 50% and higher than ± 50%.

Method accuracy was determined by assessing trueness (as recovery) and precision (as repeatability and as reproducibility – RSDr and RSDWR, respectively). M. officinalis and M. sylvestris were spiked at 12, 20, 50, and 75 µg kg−1 for pesticides, 2, 5, 10 and 20 µg kg−1 for mycotoxins of group 1, and 100, 250, 500 and 1000 µg kg−1 for mycotoxins of group 2, with sevens replicates at each level. As shown in Tables 3 and 4, the recovery percentages obtained (70–120%) and the standard deviations associated with the replicates showed RSD < 20%, which are acceptable according to the SANTE document 11312/2021 (ref. 35) for the 157 pesticide residues and mycotoxins in M. officinalis and the 152 in M. sylvestris.

The LOD and LOQ were established as the lowest tested solution with a S/N > 3 and the lowest spiked concentration with acceptable accuracy and precision (RSDr and RSDWR), respectively, fulfilling the requirements of SANTE document 11312/2021 (ref. 35) for a quantitative method. When the data were analyzed, 117 pesticides presented an LOQ at 10 µg kg−1, and 15, 14 and 2 pesticides presented an LOQ at 20, 50, and 70 µg kg−1, respectively, for M. officinalis. For M. sylvestris, 99 pesticides presented an LOQ at 10 µg kg−1, and 20, 14 and 6 pesticides presented an LOQ at 20, 50, and 70 µg kg−1, respectively, showing that most pesticides met the accuracy and precision requirements at the lowest spiked level.

In some cases, such as diflubenzuron, propamocarb, and triadimenol, an LOQ (70 µg kg−1) was achieved in M. sylvestris that did not fulfill validation requirements (n.f.r.) for M. officinalis. Conversely, analytes validated in M. officinalis but not in M. sylvestris included bifenazate, diethofencarb, fumonisin B1 and B2, halofenozide, haloxyfop-2-ethoxyethyl, methidathion, omethoate and thiodicarb. Most of these analytes had recovery fluctuations between all 14 replicates, leading to a low precision, indicating the method was not repeatable nor reproducible for these analytes in this specific matrix. For mycotoxins, all four aflatoxins presented an LOQ at 5 µg kg−1 and ochratoxin A at 10 µg kg−1.

In this study, two different medicinal herbs, from distinct families and genera, with different pharmacological parts were used for method validation. When comparing the two matrices for all compounds, it is evident that significant deviation in results can occur due to the unique matrix effect caused by each matrix on each analyte. The matrix-matched calibration for both matrices presented similar matrix effects for 111 analytes. Most mycotoxins presented a difference higher than 20% in matrix effect between the two matrices. Fenazaquin, fenhexamid, imazapic, and propyzamid showed signal suppression in M. officinalis while in M. sylvestris, an enhancement in the analytical signal was observed. More polar compounds, such as acephate, methamidophos, and omethoate, presented the same matrix effect in both matrices, indicating that a representative matrix could be used without compromising the results.

Commercial sample

Imidacloprid residues (13 µg kg−1) were found in a M. officinalis sample. However, there is no MRL for this pesticide, meaning there should be no residues in medicinal herbs sold in the country. Only one sample of M. sylvestris showed residues of methyl pirimiphos, at a concentration of 11.6 µg kg−1, which is within the MRL (4000 µg kg−1) set by Brazilian legislation.32

Sample comparisons were carried out with herbarium reference material (SMDB) and via anatomical analysis of samples that showed pesticide residues. These evaluations were carried out in the herbarium of the Botanical Garden (SMDB) and in the Laboratory of Plant Taxonomy (Biology Department/UFSM). The sample sold as M. officinalis was not confirmed to be this species but was compatible with species of Lamiaceae and Verbenaceae. Thus, the consumer used a species other than M. officinalis, and in addition to not having its pharmacological properties, they were also exposed to pesticide residue. The Malva sylvestris sample was identified as partially compatible with Malva sp., mostly mixed with other Malvaceae species.

Despite the limited sampling, the results obtained suggest the non-application of pesticides or the conscious use of pesticides on the medicinal herbs analyzed. In China, in green tea samples analyzed by Y. Huang et al.,54 67% of the samples contained some pesticide residue, and the majority contained more than five pesticides.

Regarding the presence of mycotoxins, none of those studied were detected in the analyzed samples, indicating correct drying and storage. In the study by N. Pallarés et al.,55 224 samples of herbal medicines and their infusions were analyzed. The results revealed that aflatoxins B2, G1, and G2 as well as zearalenone, were detected in infusions with incidences ≤ 6% and at concentrations below the limit of quantification up to 82.2 µg L−1. Even though in this study the majority of samples were not positive for the target compounds, investigations need to continue so that more data can be collected to guide national public policies.

Conclusion

This study presents the first reported method for the determination of over 160 mycotoxins/pesticides in medicinal herbs. The developed approach involves a rapid, simple, and effective extraction applying QuEChERS coupled with dSPE clean-up and LC-TQ-MS/MS quantification, which proved to be sufficiently sensitive to meet the diverse analytical requirements for multi-mycotoxin and multi-pesticide analysis. Through a comprehensive clean-up study, it was determined that a combination of GCB, PSA, and MgSO4 provided the optimal conditions for the simultaneous determination of mycotoxins and pesticides. Validation of the method was conducted using two complex matrices, M. officinalis and M. sylvestris, demonstrating that the majority of analytes met the criteria outlined in the EU SANTE/11312/2021 method validation guidelines. The method demonstrates reliable recoveries, as well as excellent accuracy and precision. Additionally, quality controls were implemented for both the extraction process and equipment injection to identify any potential method deviations during the analysis of commercial samples. Analysis of forty-two commercial samples from Southern Brazil revealed the presence of imidacloprid in M. officinalis and methyl pirimiphos in M. sylvestris underscoring the efficacy of the method for routine analysis of medicinal plants.

Importantly, this method addresses a significant gap in the literature, as specific analytical methods for mycotoxins and pesticides in M. officinalis and M. sylvestris are currently limited. Consequently, this method represents a valuable tool for monitoring programs aimed at generating data on residue and contaminants in medicinal plants, thereby aiding in the establishment of maximum residue levels (MRLs) and facilitating risk assessment procedures.

Data availability

At this moment, the raw data generated from this study are only available from computers located at the Center of Research and Analysis of Residues and Contaminants (CEPARC) – Chemistry Department – Federal University of Santa Maria, Santa Maria, Brazil. However, the great majority of secondary data obtained are already present in the tables, figures and text submitted here.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to acknowledge Agilent Technologies; The Brazilian Ministry of Science, Technology, and Innovation (MCTI); The Ministry of Agriculture, Livestock and Food Supply (MAPA); The Studies and Projects Finance Organization (FINEP); The National Council for Scientific and Technological Development (CNPq); The Coordination for the Improvement of Higher-Level Personnel (CAPES); Rio Grande do Sul State Research Support Foundation (FAPERGS) – PPSUS 2020 call and Federal University of Santa Maria (UFSM).

References

  1. C. S. P. Della Pasqua, R. D. Iwamoto, E. Antunes, A. A. Borghi, A. C. H. F. Sawaya and E. C. T. Landucci, J. Ethnopharmacol., 2019, 231, 50–56,  DOI:10.1016/j.jep.2018.11.012.
  2. M. K. Purkait, D. Haldar and P. Duarah, in Advances in Extraction and Applications of Bioactive Phytochemicals, Elsevier, 2023, pp. 197–217,  DOI:10.1016/B978-0-443-18535-9.00002-8.
  3. B. Motahareh, H. Shahin, M. Masoud and S. Tabandeh, J. Herb. Med., 2022, 31, 100532,  DOI:10.1016/j.hermed.2021.100532.
  4. W. A. Abdel-Naime, J. R. Fahim, M. A. Fouad and M. S. Kamel, S. Afr. J. Bot., 2019, 124, 228–234,  DOI:10.1016/j.sajb.2019.05.011.
  5. M. Meneses, A. L. Antonio and S. Cabo Verde, Appl. Radiat. Isot., 2021, 168, 109391,  DOI:10.1016/j.apradiso.2020.109391.
  6. A. Irfan, M. Imran, M. Khalid, M. Sami Ullah, N. Khalid, M. A. Assiri, R. Thomas, S. Muthu, M. A. Raza Basra, M. Hussein, A. G. Al-Sehemi and M. Shahzad, J. Saudi Chem. Soc., 2021, 25, 101277,  DOI:10.1016/j.jscs.2021.101277.
  7. M. Seddighfar, S. M. Mirghazanfari and M. Dadpay, J. Integr. Med., 2020, 18, 181–188,  DOI:10.1016/j.joim.2020.02.003.
  8. L. Luo, L. Dong, Q. Huang, S. Ma, P. Fantke, J. Li, J. Jiang, M. Fitzgerald, J. Yang, Z. Jia, J. Zhang, H. Wang, Y. Dai, G. Zhu, Z. Xing, Y. Liang, M. Li, G. Wei, J. Song, J. Wei, C. Peng, H. Zhang, W. Zhang, S. Wang, K. Mizuno, A. A. G. Marco, L. Wu, J. Xu, C. Xiong and S. Chen, Chemosphere, 2021, 262, 127477,  DOI:10.1016/j.chemosphere.2020.127477.
  9. N. S. Shaban, K. A. Abdou and N. E.-H. Y. Hassan, Beni-Suef Univ. J. Basic Appl. Sci., 2016, 5, 102–106,  DOI:10.1016/j.bjbas.2015.10.001.
  10. I. Sedova, M. Kiseleva and V. Tutelyan, Toxins, 2018, 10, 444,  DOI:10.3390/toxins10110444.
  11. S. Agriopoulou, E. Stamatelopoulou and T. Varzakas, Foods, 2020, 9, 137,  DOI:10.3390/toxins13060399.
  12. D. Pickova, V. Ostry, J. Toman and F. Malir, Toxins, 2021, 13, 399,  DOI:10.3390/toxins13060399.
  13. O. M. Areo, O. A. Abafe, S. Gbashi and P. B. Njobeh, Food Control, 2023, 143, 109255,  DOI:10.1016/j.foodcont.2022.109255.
  14. Brasil. Ministério da Saúde, Agência Nacional de Vigilância Sanitária, RDC no 105 de 31 de agosto de 2016. Altera a Resolução da Diretoria Colegiada - RDC no 26, de 13 de maio de 2014, que dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos, 2016, available at, https://www.gov.br/saude/pt-br/composicao/sectics/pnpmf/orientacao-ao-prescritor/Publicacoes/resolucao-rdc-no-26-de-13-de-maio-de-2014.pdf/view Search PubMed.
  15. P. Eyring, M. Tienstra, H. Mol, S. S. Herrmann, P. H. Rasmussen, H. L. Frandsen and M. E. Poulsen, Food Chem., 2021, 356, 129653,  DOI:10.1016/j.foodchem.2021.129653.
  16. M. Anastassiades, S. J. Lehotay, D. Stajnbaher and F. J. Schenck, J. AOAC Int., 2003, 86, 412–431,  DOI:10.1093/jaoac/86.2.412.
  17. S. J. Lehotay, K. Mastovská and A. R. Lightfield, J. AOAC Int., 2005, 88, 615–629 CrossRef CAS PubMed.
  18. G. Martínez-Domínguez, R. Romero-González and A. Garrido Frenich, Food Chem., 2016, 197, 907–915,  DOI:10.1016/j.foodchem.2015.11.070.
  19. H. G. J. Mol, P. Plaza-Bolaños, P. Zomer, T. C. de Rijk, A. A. M. Stolker and P. P. J. Mulder, Anal. Chem., 2008, 80, 9450–9459,  DOI:10.1016/j.foodcont.2022.109255.
  20. Y. Sapozhnikova and S. J. Lehotay, Anal. Chim. Acta, 2013, 758, 80–92,  DOI:10.1016/j.aca.2012.10.034.
  21. M. Leite, A. Freitas, J. Barbosa and F. Ramos, Food Chem. Adv., 2023, 2, 100145,  DOI:10.1016/j.focha.2022.100145.
  22. J. Rubert, Z. Dzuman, M. Vaclavikova, M. Zachariasova, C. Soler and J. Hajslova, Talanta, 2012, 99, 712–719,  DOI:10.1016/j.talanta.2012.07.010.
  23. I. Rodríguez-Cañás, J. M. González-Jartín, R. Alvariño, A. Alfonso, M. R. Vieytes and L. M. Botana, Food Chem., 2023, 408, 135182,  DOI:10.1016/B978-0-12-805392-8.00016-5.
  24. I. Rodríguez, J. M. González, A. M. Botana, M. J. Sainz, M. R. Vieytes, A. Alfonso and L. M. Botana, in Liquid Chromatography, Elsevier, 2017, pp. 479–514,  DOI:10.1016/B978-0-12-805392-8.00016-5.
  25. M. Anastassiades, E. Scherbaum, B. Taşdelen and D. štajnbaher, in Pesticide Chemistry, Wiley, 2007, pp. 439–458,  DOI:10.1002/9783527611249.ch46.
  26. L. Zhang, X.-W. Dou, C. Zhang, A. Logrieco and M.-H. Yang, Toxins, 2018, 10, 65,  DOI:10.3390/toxins10020065.
  27. Y.-B. Luo, H.-B. Zheng, X.-Y. Jiang, X. Li, H.-F. Zhang, F.-P. Zhu, Y.-Q. Pang and Y.-Q. Feng, Chin. J. Anal. Chem., 2015, 43, 1538–1544,  DOI:10.1016/S1872-2040(15)60870-2.
  28. X. Xu, X. Xu, M. Han, S. Qiu and X. Hou, Food Chem., 2019, 276, 419–426,  DOI:10.1016/j.foodchem.2018.10.051.
  29. Y.-B. Luo, Z.-G. Shi, Q. Gao and Y.-Q. Feng, J. Chromatogr. A, 2011, 1218, 1353–1358,  DOI:10.1016/j.foodchem.2018.10.051.
  30. X.-T. Peng, L. Jiang, Y. Gong, X.-Z. Hu, L.-J. Peng and Y.-Q. Feng, Talanta, 2015, 132, 118–125,  DOI:10.1016/j.talanta.2014.08.069.
  31. E. Rutkowska, B. Łozowicka and P. Kaczynski, Food Chem., 2019, 279, 20–29,  DOI:10.1016/j.foodchem.2018.11.130.
  32. Brasil. Agência Nacional de Vigilância Sanitária, Farmacopéia Brasileira, plantas medicinais, Anvisa 6a edição, 2019, pp. 1–744, available at https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira Search PubMed.
  33. Codex Alimentarius, Recommended Methods of Sampling for the Determination of Pesticide Residues for Compliance with Maximum Residue Levels (MRLs), 1999, available in: &lt, https://apeda.gov.in/apedawebsite/Announcements/CODEX_method_for_sampling_for_determination_of_pesticides.pdf & gt, accessed August 30th, 2021 Search PubMed.
  34. R. C. da Silva, I. D. dos Santos, J. P. Neu, R. D. Wouters, M. E. Z. Fontana, P. D. R. Balbinot, R. Wagner and I. R. Pizzutti, Food Chem., 2022, 394, 133513,  DOI:10.1016/j.foodchem.2022.133513.
  35. European Commission, Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed Document no SANTE/11312/2021 v.2, European Commission Directorate-General for Health and Food Safety, 2024, available at https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727%26LabID=100%26Lang=EN Search PubMed.
  36. J. V. Dias, M. da G. P. Nunes, I. R. Pizzutti, B. Reichert, A. A. Jung and C. D. Cardoso, Food Chem., 2019, 293, 83–91,  DOI:10.1016/j.foodchem.2019.04.088.
  37. O. Lacina, M. Zachariasova, J. Urbanova, M. Vaclavikova, T. Cajka and J. Hajslova, J. Chromatogr. A, 2012, 1262, 8–18,  DOI:10.1016/j.chroma.2012.08.097.
  38. L. P. da Silva, F. Madureira, E. de Azevedo Vargas, A. F. Faria and R. Augusti, Food Chem., 2019, 270, 420–427,  DOI:10.1016/j.foodchem.2018.07.126.
  39. M. Kresse, H. Drinda, A. Romanotto and K. Speer, J. Chromatogr. B, 2019, 1117, 86–102,  DOI:10.1016/j.jchromb.2019.04.013.
  40. A.-K. Rausch, R. Brockmeyer and T. Schwerdtle, Anal. Bioanal. Chem., 2021, 413, 3041–3054,  DOI:10.1007/s00216-021-03239-1.
  41. J. V. Dias, R. C. da Silva, I. R. Pizzutti, I. D. dos Santos, M. Dassi and C. D. Cardoso, J. Food Compos. Anal., 2019, 82, 103242,  DOI:10.1016/j.jfca.2019.103242.
  42. X. Xu, X. Xu, M. Han, S. Qiu and X. Hou, Food Chem., 2019, 276, 419–426,  DOI:10.1016/j.foodchem.2018.10.051.
  43. T. W. Na, H.-J. Seo, S.-N. Jang, H. Kim, H. Yun, H. Kim, J. Ahn, H. Cho, S.-H. Hong, H. J. Kim and S. H. Lee, J. Chromatogr. A, 2022, 1676, 463257,  DOI:10.1016/j.chroma.2022.463257.
  44. Y. Sapozhnikova, P. Zomer, A. Gerssen, A. Nuñez and H. G. J. Mol, Food Control, 2020, 116, 107323,  DOI:10.1016/j.foodcont.2020.107323.
  45. B. Reichert, A. de Kok, I. R. Pizzutti, J. Scholten, C. D. Cardoso and M. Spanjer, Anal. Chim. Acta, 2018, 1004, 40–50,  DOI:10.1016/j.aca.2017.11.077.
  46. M. Cladière, G. Delaporte, E. Le Roux and V. Camel, Food Chem., 2018, 242, 113–121,  DOI:10.1016/j.foodchem.2017.08.108.
  47. K. Russo, D. Lucchetti, D. Triolone, P. di Giustino, M. Mancuso, D. Delfino and B. Neri, Phytochem. Lett., 2021, 46, 153–161,  DOI:10.1016/j.phytol.2021.10.002.
  48. L. Izzo, A. Narváez, L. Castaldo, A. Gaspari, Y. Rodríguez-Carrasco, M. Grosso and A. Ritieni, J. Dairy Sci., 2022, 105, 2948–2962,  DOI:10.3168/jds.2021-21123.
  49. S. Bhattacharyya, R. Poi, M. Baskey Sen, D. Kumar Hazra, R. Ghosh, S. Mandal and R. Karmakar, Microchem. J., 2022, 179, 107444,  DOI:10.1016/j.microc.2022.107444.
  50. T.-K. Ly, T.-D. Ho, P. Behra and T.-T. Nhu-Trang, Food Chem., 2020, 326, 126928,  DOI:10.1016/j.foodchem.2020.126928.
  51. C. S. Vareli, I. R. Pizzutti, L. Gebler, C. D. Cardoso, D. S. H. Gai and M. E. Z. Fontana, Talanta, 2018, 184, 202–209,  DOI:10.1016/j.talanta.2018.03.009.
  52. X. Wu and Z. Ding, Food Chem., 2023, 405, 134755,  DOI:10.1016/j.foodchem.2022.134755.
  53. W. Li, Y. Liu, J. Duan, C. P. Saint and D. Mulcahy, J. Chromatogr. A, 2015, 1389, 76–84,  DOI:10.1016/j.chroma.2015.02.044.
  54. Y. Huang, T. Shi, X. Luo, H. Xiong, F. Min, Y. Chen, S. Nie and M. Xie, Food Chem., 2019, 275, 255–264,  DOI:10.1016/j.foodchem.2018.09.094.
  55. N. Pallarés, H. Berrada, M. Fernández-Franzón and E. Ferrer, Plant Foods Hum. Nutr., 2020, 75, 362–368,  DOI:10.1007/s11130-020-00820-4.

This journal is © The Royal Society of Chemistry 2024
Click here to see how this site uses Cookies. View our privacy policy here.