Dietary liposomal complexes change the fatty acid composition of hepatic bioactive phospholipids in F1(C57blxDBA2\6) mice, as shown by a lipidomic approach†
Abstract
Essential polyunsaturated fatty acids (PUFAs) of the n-3 and n-6 classes are crucial for maintaining many physiological functions of the human body. It has previously been suggested that the beneficial effects of n-3 PUFAs are mediated by the action of bioactive lipid components, although it remains unclear which specific lipids are metabolically active. The aim of this study was to assess the impact of various liposomal diets on the content and ratio of liver phospholipids, containing n-3 and n-6 PUFAs, in F1 (C57blxDBA2\6) mice. Lipidomic analysis using chromatography-mass spectrometry was employed to investigate changes in the fatty acid profile of liver phospholipids in six groups of mice. These mice were fed liposomal complexes of different compositions in drinks replacing water for a long-term diet (3 months). Two additional groups of mice, aged 2 and 5 months, were used as control groups. The six liposomal complexes included different combinations of phosphatidylcholine (PC), a natural antioxidant (clove bud essential oil (CEO)), fish oil (FO), and sodium caseinate (SC). The consumption of the PC–CEO–FO–SC liposomal complex significantly increased the amount of liver phospholipids containing n-3 docosahexaenoic acid, including phosphatidylcholines, phosphatidylethanolamines (PE), phosphatidylserines (PS), and lysophosphatidylcholine (LPC). This increase was accompanied by a marked decrease in the amount of phospholipids containing n-6 arachidonic acid. As a result, the weight ratio of phospholipids containing n-6 PUFAs to those containing n-3 PUFAs decreased significantly, especially for PC and PE subclasses. Therefore, the PC–CEO–FO–SC liposomal complex has the potential to enhance resistance to inflammation and reduce the risk of non-communicable diseases.