The meso-substituent electronic effect of Fe porphyrins on the electrocatalytic CO2 reduction reaction†
Abstract
We report Fe porphyrins bearing different meso-substituents for the electrocatalytic CO2 reduction reaction (CO2RR). By replacing two and four meso-phenyl groups of Fe tetraphenylporphyrin (FeTPP) with strong electron-withdrawing pentafluorophenyl groups, we synthesized FeF10TPP and FeF20TPP, respectively. We showed that FeTPP and FeF10TPP are active and selective for CO2-to-CO conversion in dimethylformamide with the former being more active, but FeF20TPP catalyzes hydrogen evolution rather than the CO2RR under the same conditions. Experimental and theoretical studies revealed that with more electron-withdrawing meso-substituents, the Fe center becomes electron-deficient and it becomes difficult for it to bind a CO2 molecule in its formal Fe0 state. This work is significant to illustrate the electronic effects of catalysts on binding and activating CO2 molecules and provide fundamental knowledge for the design of new CO2RR catalysts.