Magnetic phase transition regulated by an interface coupling effect in CrBr3/electride Ca2N van der Waals heterostructures†
Abstract
Compared with ferromagnetic (FM) materials, antiferromagnetic (AFM) materials have the advantages of not generating stray fields, resisting magnetic field disturbances, and displaying ultrafast dynamics and are thus considered as ideal candidate materials for next-generation high-speed and high-density magnetic storage. In this study, a new AFM device was constructed based on density functional theory calculations through the formation of a CrBr3/Ca2N van der Waals heterostructure. The FM ground state in CrBr3 undergoes an AFM transition when combining with the electride Ca2N. In such a system, since the metal Ca atoms form the exposed layer in the electride, the heterostructure interface has a high binding energy and a large amount of charge transfer. However, for individual electron doping, the FM ground state in the CrBr3 monolayer is robust. Therefore, the main factor in magnetic phase transition is the interface orbital coupling caused by the strong binding energy. Furthermore, the interface coupling effect was revealed to be a competition between direct exchange and superexchange interactions. Additionally, different pathways of orbital hybridization cause a transition of the magnetic anisotropy from out-of-plane to in-plane. This work not only provides a feasible strategy for changing the ground state of magnetic materials on electride substrates but also brings about more possibilities for the construction and advancement of new AFM devices.