Issue 12, 2024

Reduction of hexavalent chromium by compost-derived dissolved organic matter

Abstract

Compost-derived dissolved organic matter (DOMC) is a heterogeneous assemblage of different redox-active organic molecules. We hypothesize that DOMC can interact with Cr(VI) and reduce it to Cr(III), thereby influencing the dynamics of Cr(VI) in soil and aquatic environments. Here, DOMC, along with soil humic substances isolated from red soil and black soil, were fractionated into humic acid fractions (i.e., HAC, HAB, and HAR) and fulvic acid fractions (i.e., FAC, FAB, and FAR), respectively. The reduction and interaction between Cr(VI) and the six organic matter fractions were investigated. The results showed that the total Cr(VI) reduction capacity (TRC) of the six organic matter fractions was 26.77–49.34 μM Cr(VI) per mg OM. The TRC of HA fractions was 35.54–49.34 μM Cr(VI) per mg OM, which exceeded that of FA fractions (26.77–31.29 μM Cr(VI) per mg OM). DOMC had a HA/FA ratio of 0.64, which was higher than that of black soil humic substance (0.59) and red soil humic substance (0.20). The sum of the TRC of DOMC was 35.57 μM Cr(VI) per mg OM, which was larger than that of black soil humic substance (32.87 μM Cr(VI) per mg OM) and red soil humic substance (33.01 μM Cr(VI) per mg OM). The TRC was positively correlated with TOC, TN, phenol C, alkyl C, and aromatic C contents and negatively correlated with E2/E3, O-alkyl C, and carboxyl C contents. The reduction of Cr(VI) at pH 6 was negligible, whereas 32–67% Cr(VI) was reduced at pH 2. The Cr(VI) reduction capacities (RC2, RC2, and RC6) at pH 2–6 were positively correlated (R2 > 0.71) with phenol C. Spectral analysis showed that there was no obvious complexation between Cr(VI) and the six organic matter fractions at pH 6, and thus the reduction of Cr(VI) was negligible, but solution pH could affect the accessibility of organic molecules to Cr(VI) and thus influence Cr(VI) reduction.

Graphical abstract: Reduction of hexavalent chromium by compost-derived dissolved organic matter

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2024
Accepted
24 Oct 2024
First published
15 Nov 2024

Environ. Sci.: Processes Impacts, 2024,26, 2297-2308

Reduction of hexavalent chromium by compost-derived dissolved organic matter

C. Miao, H. Rong, X. Wei, J. Shang, H. Zhou and Y. Lv, Environ. Sci.: Processes Impacts, 2024, 26, 2297 DOI: 10.1039/D4EM00280F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements