Biomass attachment and microbiota shifts during porcine faecal in vitro fermentation of almond and macadamia nuts differing in particle sizes†
Abstract
Nuts are highly nutritious and good sources of dietary fibre, when consumed as part of a healthy human diet. Upon consumption, nut particles of various sizes containing lipids entrapped by the plant cell walls enter the large intestine where they are fermented by the resident microbiota. This study investigated the microbial community shifts during in vitro fermentation of almond and macadamia substrates, of two particle sizes including fine particles (F = 250–500 μm) and cell clusters (CC = 710–1000 μm). The aim was to determine how particle size and biomass attachment altered the microbiota. Over the 48 h fermentation duration, short chain fatty acid concentrations increased due to particle size rather than nut type (almond or macadamia). However, nut type did change microbial population dynamics by stimulating specific genera. Tyzzerella, p253418B5 gut group, Lachnospiraceae UCG001, Geotrichum, Enterococcus, Amnipila and Acetitomaculum genera were unique for almonds. For macadamia, three unique genera including Prevotellaceae UCG004, Candidatus Methanomethylophilus and Alistipes were noted. Distinct shifts in the attached microbial biomass were noted due to nut particle size. Bacterial attachment to nut particles was visualised in situ during fermentation, revealing a decrease in lipids and an increase in attached bacteria over time. This interaction may be a pre-requisite for lipid breakdown during nut particle disappearance. Overall, this study provides insights into how nut fermentation alters the gut microbiota and the possible role that gut microbes have in lipid degradation.