Issue 40, 2024

Deep learning-assisted inverse design of metasurfaces for active color image tuning

Abstract

Metasurfaces, artificial planar nanostructures, offer numerous advantages for color printing applications, including ultra-high resolution, resistance to fading, wide color gamut coverage, and multifunctional capabilities. Due to the sensitivity of their resonance spectra to the external environment, metasurfaces have garnered significant interest for color tuning applications. However, most existing approaches are limited to passive color tuning, wherein only the color changes passively while the composite color image remains unaltered. Active color image tuning, on the other hand, requires precise matching of both color and intensity to the designed targets before and after the tuning process. In this study, we propose a novel approach for active metasurface color image tuning by modulating the environmental refractive index. Building upon a forward neural network that establishes the relationship between the metasurface geometric parameters and color/intensity information, we employ a multi-objective inverse adjoint neural network. This network not only overcomes the inherent ‘one-to-many’ problem in inverse design using neural networks but also facilitates active color image tuning under three distinct environmental conditions. Our work provides a new approach for the inverse design of metasurfaces and opens up possibilities for applications in dynamic color printing, information encryption, and other related fields.

Graphical abstract: Deep learning-assisted inverse design of metasurfaces for active color image tuning

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2024
Accepted
14 Sep 2024
First published
16 Sep 2024

Nanoscale, 2024,16, 19034-19041

Deep learning-assisted inverse design of metasurfaces for active color image tuning

Q. Weng and Y. Bao, Nanoscale, 2024, 16, 19034 DOI: 10.1039/D4NR02378A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements