Heterogeneous solvent dissipation coupled with particle rearrangement in shear-thinning non-Brownian suspensions†
Abstract
Dense non-Brownian suspensions exhibit significant shear thinning, although a comprehensive understanding of the full scope of this phenomenon remains elusive. This study numerically reveals intimate heterogenous coupled dynamics between many-body particle motions and solvent hydrodynamics in shear-thinning non-Brownian suspensions. In our simulation systems, we do not account for frictional contact forces, reflecting experimental conditions under low shear rates where shear thinning occurs, while hydrodynamic interactions are directly incorporated using the Smoothed Profile Method. We demonstrate the spatially correlated viscous dissipation and particle motions; they share the same characteristic length, which decreases with increasing shear rate. We further show that, at lower shear rates, significant particle density changes are induced against the incompressibility of the solvent, suggesting the cooperative creation and annihilation of gaps and flow channels. We discuss that hydrodynamic interactions may substantially restrict particle rearrangements even in highly dense suspensions, influencing the quantitative aspects of macroscopic rheology.