Particle–wall alignment interaction and active Brownian diffusion through narrow channels†
Abstract
We numerically examine the impacts of particle–wall alignment interactions on active species diffusion through a structureless narrow two-dimensional channel. We consider particle–wall interaction to depend on the self-propulsion velocity direction whereby some specific particle's alignments with respect to the boundary walls are stabilized more. Further, the alignment interaction is meaningful as long as particles are close to the confining boundaries. Unbiased diffusion of active particles for various possible stable velocity alignments against the walls has been examined. We show that for the most stable configuration leading to the self-propulsion velocity direction perpendicular to the wall, diffusivity becomes inversely proportional to the square of the alignment interaction torque. On the other hand, when the self-propulsion velocity direction making an acute angle to the channel walls is the most stable configuration, diffusion exponentially grows with strengthening alignment interaction. Hence, particle–wall interaction plays a pivotal role in the transport control of active particles through narrow channels. Moreover, the impacts of the alignment interactions on diffusion largely depend on the particle's self-propulsion properties and its chirality. Our simulation results can potentially be used to understand unbiased diffusion of artificial or living micro/nano-objects (such as virus, bacteria, Janus particles, etc.) though narrow confined structures.