Development of a coarse-grained molecular dynamics model for poly(dimethyl-co-diphenyl)siloxane†
Abstract
Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in this material with resulting changes in its structural and dynamic properties. The incorporation of phenyl-siloxane components, e.g., as in a poly(dimethyl-co-diphenyl)siloxane random copolymer, is known to suppress such crystallization. Molecular dynamics (MD) simulations can be a powerful tool to understand such effects in atomistic detail. Unfortunately, all-atomistic molecular dynamics (AAMD) is limited in both spatial dimensions and simulation times it can probe. To overcome such constraints and to extend to more useful length- and time-scales, we systematically develop a coarse-grained molecular dynamics (CGMD) model for the poly(dimethyl-co-diphenyl)siloxane system with bonded and non-bonded interactions determined from all-atomistic simulations by the iterative Boltzmann inversion (IBI) method. Additionally, we propose a lever rule that can be useful to generate non-bonded potentials for such systems without reference to the all-atomistic ground truth. Our model captures the structural and dynamic properties of the copolymer material with quantitative accuracy and is useful to study long-time dynamics of highly-entangled systems, sequence-dependent properties, phase behaviour, etc.