Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In this comprehensive review, we explore the breakthrough potential of organic luminescent compounds with aggregation-induced emission (AIE) for advancing deep-blue organic light-emitting diodes (OLEDs). Traditional fluorescent materials are associated with certain limitations due to aggregation-caused quenching (ACQ), which impacts their efficiency and doping. Accordingly, the introduction of AIE has revolutionized this field by overcoming ACQ, leading to impressive emission efficiency in solid-state AIEgens. Ingeniously designed AIEgens utilize singlet and triplet excitons, surpassing the conventional OLED limits. This review presents the evolution of AIE-based non-doped OLEDs, emphasizing the AIE-active components and effective architectures. Also, the strategies to mitigate fluorescence quenching and integrate hole/electron-transporting elements are presented in detail. High-efficiency deep-blue AIEgens show promise for application in OLEDs in solid-state lighting and versatile displays, including white OLEDs. Thus, we also summarized some deep-blue and blue non-doped OLEDs using AIEgens with TADF and/or HLCT processes, and PLEDs as EMLs are examined to use the residual excitons of triplet states. This review provides a roadmap for the advancement of AIE-based OLEDs, shaping the future of lighting and visual technologies.

Graphical abstract: Efficiency boost in non-doped blue organic light-emitting diodes: Harnessing aggregation-induced emission – a comprehensive review

Page: ^ Top