“Hot-dog-string” drug-eluting degradable stents for treating stenosis in tortuous arteries

Abstract

Despite advances in cardiovascular technology, treating stenosis in tortuous arteries with balloon-expandable stents, typically deployed in a straight orientation, remains a challenge. This study developed novel balloon-expandable “hot-dog-string” (HDS) drug-eluting poly(ε-caprolactone) (PCL) nanofibrous stents using solvent casting and coaxial electrospinning techniques. A unique HDS geometry was designed for the PCL stent backbone, while aspirin and sirolimus were loaded into the core–sheath structured poly(lactic-co-glycolic acid) (PLGA) nanofibers, which were then wrapped around the degradable stent. In vitro characterization of the biodegradable HDS stent and drug-eluting nanofibers was conducted. The results indicate that the biodegradable HDS stents exhibited excellent mechanical properties and superior flexibility, allowing them to navigate curved sections of a simulated in vitro vessel model more effectively than metallic stents. The core–sheath structure of the nanofibers enabled sustained release of high concentrations of aspirin and sirolimus over 14 and 23 days, respectively, with sirolimus effectively inhibiting smooth muscle cell proliferation. Moreover, in vivo animal tests showed that the rabbits remained in good health with excellent vessel patency following stent placement. By implementing the innovative design and techniques proposed in this study, we anticipate fabricating biodegradable drug-eluting HDS stents of various sizes for diverse cardiovascular applications at curved lesions.

Graphical abstract: “Hot-dog-string” drug-eluting degradable stents for treating stenosis in tortuous arteries

Article information

Article type
Paper
Submitted
06 Nov 2024
Accepted
15 Feb 2025
First published
19 Feb 2025

Biomater. Sci., 2025, Advance Article

“Hot-dog-string” drug-eluting degradable stents for treating stenosis in tortuous arteries

C. Lee, P. Feng, S. Hsu, Y. Kuo and S. Liu, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D4BM01478B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements