A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis

Abstract

Accurate imaging of tumor hypoxia in vivo is critical for early cancer diagnosis and clinical outcomes, highlighting the great need for its detection specificity and sensitivity. In this report, we propose a probe (HTRNP) that simultaneously has hypoxia-targeting and hypoxia-responsive capabilities to enhance the tumor hypoxia imaging efficiency. HTRNP was successfully prepared through the encapsulation of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP), which exhibits hypoxia-dependent phosphorescence, within the amphiphilic block copolymer OPDMA-PF, which has hypoxia-targeting tertiary amine N-oxide moieties and hydrophobic perfluorobenzene ring structures, which highly improved the loading content and water solubility of PtPFPP. By combining targeting and response abilities toward hypoxic conditions, the HTRNP micelles efficiently accumulate in the tumor tissues and emit intense phosphorescence, thus enabling ultrasensitive detection of various tumor models, even of hundreds of cancer cells, indicating its promising potential for early cancer detection and phenotypic characterization.

Graphical abstract: A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Nov 2024
Accepted
09 Jan 2025
First published
14 Jan 2025

Biomater. Sci., 2025, Advance Article

A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis

Y. Chen, H. Wang, X. Xu, H. Xu, B. Xiao, P. Yuan, S. Shao, W. Sun, Z. Zhou, Y. Shen and J. Tang, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D4BM01499E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements