Issue 8, 2025

Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution

Abstract

Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock H2O into energy-rich molecular H2. Herein, two families of pyridazine-based cryptates, mononuclear [MIILi](BF4)2 and mixed metal dinuclear [MIICuILi](BF4)3 (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnIICuILi](BF4)3, and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnIILi](BF4)2·0.5H2O, are reported. Electrocatalytic HER testing showed that a deposit forms on the glassy carbon working electrode during electrolysis and it is the active species responsible for the very modest activity observed. The deposits formed by the heterobinuclear cryptates had higher activities (2.0 < TON2h < 3.5) than the deposits formed by the mononuclear cryptates (TON2h < 0.75). But unfortunately the control, using CuI(MeCN)4BF4, had a similar TON2h (2.3) to those seen for the heterobinculear cryptates, which indicates that it is the deposit formed by the CuI cation present in the heterobinuclear cryptates that is likely responsible for the observed, very modest, HER activity.

Graphical abstract: Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2024
Accepted
06 Jan 2025
First published
09 Jan 2025

Dalton Trans., 2025,54, 3165-3173

Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution

V. Singh, M. G. Robb and S. Brooker, Dalton Trans., 2025, 54, 3165 DOI: 10.1039/D4DT03161J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements