Exploring the structural and photophysical properties of tri-cation mixed halide double perovskites (Cs2AgIn0.85−XCeXBi0.15Cl6) for high-performance phosphor-based WLEDs

Abstract

Owing to their superior optoelectronic properties, lead-free halide double perovskites (HDPs) have been extensively studied for a wide range of optoelectronic applications, especially for fabricating white light-emitting diodes (WLEDs). Considering white light emission, the HDP structure's dual octahedral configuration facilitates greater lattice distortion, thereby fostering strong electron–phonon coupling-derived self-trapped exciton (STE) emission upon photoexcitation. Herein, we propose facile fabrication of a highly feasible phosphor-converted white light LED and an intensive analysis of the structural, compositional and photophysical properties of a tri-cation mixed halide double perovskite. We chose Cs2AgIn0.85Bi0.15Cl6 as a potential candidate for electroluminescent-based white light LED devices as its composition exhibits high stability, direct-allowed transition, and a notable photoluminescence quantum yield. However, we incorporated a lanthanide ion (Ce3+) into this cubic HDP structure via tri-cation mixing at the B′′ site (Cs2AgIn0.85−XCeXBi0.15Cl6) to internally disturb structural periodicity and further enhance STE emission. Initially, powder XRD revealed the lattice expansion induced by Ce3+ incorporation, while XPS and TEM verified the substitution of Ce3+ at the In3+ site. Meanwhile, compositional and optical studies established the role of Ce3+ in retaining the direct allowed transition by effectively replacing the In3+ site. Urbach energy (EU), a measure of energetic disorderness at band edges, was found to be significantly reduced, showing a value of 135 meV for the Ce-5% sample. Most significantly, PL emission studies revealed an appreciable enhancement in the PL intensity with a prolonged STE lifetime of 670 ns for Cs2AgIn0.80Ce0.05Bi0.15Cl6, indicating improved radiative recombination. Besides, excitation-dependent Pl and PLE studies revealed that the emission solely came from the STE states. Elaboratively, vibrational studies elucidated that the Ce-5% sample exhibited a restabilized elpasolite structure and enhanced lattice phonons, which ultimately helped in boosting STE emission, as proven by the Huang–Rhys factor (S = 13). Finally, an efficient and durable phosphor-converted WLED was fabricated, and its performance was assessed, revealing CIE coordinates of (0.35,0.32), a CCT of 4368 K, and an extremely high CRI (Ra) of 92. Thus, our work provides an exclusive strategy to enhance the STE emission for potential application in electroluminescent-based WLED devices.

Graphical abstract: Exploring the structural and photophysical properties of tri-cation mixed halide double perovskites (Cs2AgIn0.85−XCeXBi0.15Cl6) for high-performance phosphor-based WLEDs

Supplementary files

Article information

Article type
Paper
Submitted
10 Dec 2024
Accepted
12 Feb 2025
First published
13 Feb 2025

Dalton Trans., 2025, Advance Article

Exploring the structural and photophysical properties of tri-cation mixed halide double perovskites (Cs2AgIn0.85−XCeXBi0.15Cl6) for high-performance phosphor-based WLEDs

N. Ravi, P. Kanapathi, S. Mohan and T. Appadurai, Dalton Trans., 2025, Advance Article , DOI: 10.1039/D4DT03417A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements