Thioether oxidation with tert-butyl hydroperoxide catalysed by Zr(iv)-substituted polyoxometalates

Abstract

Zr-substituted polyoxometalates (Zr-POMs) with Lindqvist, Keggin and Wells–Dawson structures, (Bu4N)6[{W5O18Zr(μ-OH)}2] (Zr-L), (Bu4N)8[{PW11O39Zr(μ-OH)}2] (Zr-K) and (Bu4N)11H3[{P2W17O61Zr(μ-OH)}2] (Zr-WD), can activate the environmentally friendly oxidant tert-butyl hydroperoxide (TBHP) and efficiently catalyse the oxidation of various thioethers to produce sulfoxides and sulfones. Ti- and Nb-substituted POMs are significantly less active than Zr-POMs. The activity and selectivity of Zr-POMs strongly depend on their structural type. The reaction rate decreases when moving from Zr-K and Zr-WD to Zr-L. With 1 equiv. of TBHP, the main product of Zr-K is sulfoxide, whereas sulfone predominates with Zr-L. The reaction mechanism was probed using test substrates, and kinetic, isotopic (H218O), and spectroscopic methods. Monomeric alkylperoxo complexes bearing one tert-butyl peroxo moiety per Zr-POM were obtained by the reaction of Zr-K and Zr-L with TBHP and characterized by elemental analysis, HR-ESI-MS, ATR-FT-IR and multinuclear NMR spectroscopy. Both Zr-K and Zr-L alkylperoxo complexes revealed activity toward thioethers under stoichiometric conditions and produced predominantly sulfoxides, pointing to an electrophilic oxygen transfer mechanism. Under turnover conditions, binding of sulfoxide to Zr-L masks the electrophilic character of oxidation and increases the yield of sulfone. The solvent nature strongly affects the oxygen transfer mechanism and oxidation selectivity.

Graphical abstract: Thioether oxidation with tert-butyl hydroperoxide catalysed by Zr(iv)-substituted polyoxometalates

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2025
Accepted
16 Jul 2025
First published
19 Jul 2025

Dalton Trans., 2025, Advance Article

Thioether oxidation with tert-butyl hydroperoxide catalysed by Zr(IV)-substituted polyoxometalates

O. V. Zalomaeva, N. V. Maksimchuk, V. Yu. Evtushok, A. A. Antonov, V. V. Yanshole and O. A. Kholdeeva, Dalton Trans., 2025, Advance Article , DOI: 10.1039/D5DT01152C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements