Elucidating lithium-ion diffusion kinetics in cation-disordered rocksalt cathodes

Abstract

Disordered rocksalt (DRX) cathodes have emerged as a promising alternative to conventional nickel/cobalt-based layered oxides owing to their higher specific capacities using earth-abundant elements. However, the poor rate capability of DRX is a critical bottleneck in practical battery operations, which is often attributed to sluggish lithium and/or electronic conduction. In this study, we elucidated the lithium diffusion mechanism in DRX, exploiting a ‘diffusion cluster’ model within a machine-learning scheme, thus effectively addressing the complexity of randomly distributed cations in the structure. Our findings revealed that DRXs intrinsically possess various diffusion paths with activation barriers that widely range from 200 meV to 1.3 eV owing to diverse lithium hopping environments created by disordered cations. Notably, we discovered that migration bottlenecks along lithium percolation paths are primarily caused by large energy differences between lithium sites (as high as ∼1 eV) rather than the transition state energy during lithium hopping, contrary to the conventional diffusion mechanism in ordered structures. The significantly broad distribution of lithium site energies is attributed to the distortion of the shape and size of lithium sites in oxides caused by disordered cations in DRX, e.g., Li1.2Mn0.4Ti0.4O2. Consequently, the large energy step from one site to the other acts as a de facto barrier for lithium hopping, impeding the overall lithium diffusion process. This new finding suggests that the key to improve the rate performance of DRX lies in flattening the landscape of lithium site energies, thus balancing the degree of cation disorder in DRX.

Graphical abstract: Elucidating lithium-ion diffusion kinetics in cation-disordered rocksalt cathodes

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2024
Accepted
13 Jan 2025
First published
28 Jan 2025

Energy Environ. Sci., 2025, Advance Article

Elucidating lithium-ion diffusion kinetics in cation-disordered rocksalt cathodes

B. Kang, J. Park, B. Kim, S. Park, J. Yoo, S. Yu, H. Kim, J. Song and K. Kang, Energy Environ. Sci., 2025, Advance Article , DOI: 10.1039/D4EE04580G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements