Issue 2, 2025

Association of volatile organic compound metabolites with hearing loss: unveiling their potential mechanism and intervention target

Abstract

Hearing loss (HL) is an otolaryngology disease susceptible to environmental pollutants. Volatile organic compounds (VOCs), as a class of chemical pollutants with evaporation propensity, pose a great threat to human health. However, the association between VOCs and HL remains unclear. This study aimed to explore the association between urinary-specific VOC metabolites and HL. It included 1048 participants from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2012. Multivariate linear regression models, smooth curve analysis, and stratified analysis were employed to investigate the relationship between urinary-specific VOC metabolite concentrations and pure tone audiometry (PTA) across three different frequencies. A two-piecewise linear regression model was employed to analyze the threshold effects of urinary-specific VOC metabolites on hearing threshold changes. Furthermore, a comparative toxicogenomics database (CTD) and functional gene enrichment were constructed. An interaction network of transcription factors, genes, and non-coding RNA was constructed to further confirm the upstream and downstream regulatory relationships. Molecular docking analyses were conducted to explore the potential binding modes and critical docking sites. Additionally, a moderation analysis was conducted to investigate the role of oxidative stress in moderating the influence of VOC metabolites on hearing. Multivariate linear regression model discerned a significant correlation between cyanide 2-aminothiazoline-4-carboxylic acid (ATCA) with speech-frequency PTA and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA) with high-frequency PTA. The smoothed curve and threshold effect analysis corroborated a positive linear relationship between cyanide ATCA and speech-frequency PTA without a threshold effect only in the 20–34 age group. Additionally, the bioinformatics analysis discovered pathogenic genes related to cyanide-induced HL and suggested that oxidative stress responses play a critical role in this biological process. Furthermore, the moderation effect of total bilirubin (TB), an oxidative stress-associated molecule, was ascertained on the effects of ATCA on hearing. Our findings suggest a potential link between VOC metabolites and hearing and indicate the crucial role of oxidative stress responses in this association.

Graphical abstract: Association of volatile organic compound metabolites with hearing loss: unveiling their potential mechanism and intervention target

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2024
Accepted
02 Jan 2025
First published
08 Jan 2025

Environ. Sci.: Processes Impacts, 2025,27, 437-452

Association of volatile organic compound metabolites with hearing loss: unveiling their potential mechanism and intervention target

J. Zhou, G. Sun, H. Zhao, H. Qin, Y. Bi and X. Chen, Environ. Sci.: Processes Impacts, 2025, 27, 437 DOI: 10.1039/D4EM00644E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements