Mo2C-derived molybdenum oxycarbides afford controllable oxidation of anilines to azobenzenes and azoxybenzenes†
Abstract
The catalytic synthesis of aromatic azo compounds via oxidative coupling of anilines still faces great challenges due to the difficulty in controlling product selectivity. In this study, we have pioneered the application of Mo2C as a pre-catalyst for the selective oxidation of aniline using H2O2 to produce azobenzenes and azoxybenzenes. Both experimental and theoretical studies reveal that H2O2 induces the formation of Mo oxycarbides (MoCxOy) on the surface of Mo2C during the reaction, which subsequently activates H2O2 to generate active sites (Mo⋯O) essential for the oxidative coupling of anilines. Furthermore, the kinetics of the critical conversion from Ph-NH2 to Ph-NHOH over MoCxOy can be adjusted by modulating the solvent, thereby enabling controlled product selectivity between azobenzenes and azoxybenzenes. This work elucidates the structural evolution of Mo2C to MoCxOy in a H2O2 system and its catalytic oxidation capabilities, potentially paving the way for broader applications of MoCxOy in various oxidation reactions.