In situ calcium isotope analysis of Sr-rich carbonates using laser ablation multi-collector inductively coupled plasma mass spectrometry

Abstract

The in situ Ca isotopic composition of carbonates serves as a fundamental tool for tracing geological and biological processes. However, doubly charged Sr ions pose significant interference challenges in Ca isotope measurement using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). This study reports a method established for high-precision Ca isotope microanalysis in Sr-rich carbonates. Instrumental parameters including gas flow, torch position and laser settings were optimized to minimize the yield of doubly charged Sr ions. The two key factors involved in the correction strategy for Sr2+ interference are the true 87Sr/86Sr ratio and the mass fractionation coefficient of Sr2+. The accuracy required for the true Sr isotope ratios of carbonates for interference correction depends on the Sr/Ca ratio, e.g., a variation in 87Sr/86Sr of 0.005 (SD) can lead to a deviation in δ44/42Ca915a of approximately 0.1‰ for samples with 87Sr2+/44Ca+ of 10−3. The fractionation coefficients for Sr2+ and Sr+ were found to differ, and adopting f+Sr in the correction results in a deviation of δ44/42Ca915a up to 0.42‰ for calcite with a Sr/Ca ratio of 0.057. Utilizing the iteratively calculated Ca+ fractionation coefficient improved the accuracy and precision of Ca isotope microanalysis. The resulting in situ Ca isotopic compositions of dolomite and calcite with Sr/Ca ratios up to 0.057 were consistent with those obtained via SN-MC-ICP-MS, with precisions of δ44/42Ca915a and δ43/42Ca915a in the ranges of 0.10–0.19‰ and 0.09–0.12‰ (2SD). The method was further validated through microanalysis of calcite from the Miaoya carbonatite-associated REE-Nb deposit, revealing distinct isotopic signatures indicative of magmatic-hydrothermal evolution.

Graphical abstract: In situ calcium isotope analysis of Sr-rich carbonates using laser ablation multi-collector inductively coupled plasma mass spectrometry

Article information

Article type
Paper
Submitted
09 Aug 2024
Accepted
11 Feb 2025
First published
13 Feb 2025

J. Anal. At. Spectrom., 2025, Advance Article

In situ calcium isotope analysis of Sr-rich carbonates using laser ablation multi-collector inductively coupled plasma mass spectrometry

J. Jiang, W. Chen, J. Lu, Y. Liu, M. Li, J. Sun, K. Zhao, S. Jiang and Y. Liu, J. Anal. At. Spectrom., 2025, Advance Article , DOI: 10.1039/D4JA00289J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements