Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip

Abstract

Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver (e.g., intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver (e.g., intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL−1). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.

Graphical abstract: Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2024
Accepted
12 Nov 2024
First published
26 Nov 2024

Lab Chip, 2025, Advance Article

Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip

Y. Wang, J. Han, W. Tang, X. Zhang, J. Ding, Z. Xu, W. Song, X. Li and L. Wang, Lab Chip, 2025, Advance Article , DOI: 10.1039/D4LC00578C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements