The reversible capillary field effect transistor: a capillaric element for autonomous flow switching

Abstract

New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels via autonomous circuit feedback. This allows new flow switching functionality without the need for direct user input. The valve design utilises new circuitry that draws on competing capillary pressures to withdraw liquid from a reservoir connected to the valve, creating a suction pressure that removes the occluding bubble from the channel to allow flow past the valve. The resulting reopening restores flow to the closed channel and allows for enhanced autonomous control over fluid flows. This new functionality is flexible and has the potential to be applied in a wide variety of situations, as shown here by use in several extended proof of concept arrangements. Firstly, we demonstrate how to reopen one valve while closing another using the same trigger to achieve simultaneous flow switching. We then show how a single trigger can be used for the parallel reopening of multiple valves for simultaneous release of liquids. Finally, we show the reversible capillary field effect transistor used to achieve autonomous transient mixing ratios between multiple liquids utilising a series of triggering events to determine which liquid channels are open or closed as flow progresses. The functionality this valve adds to the capillaric toolbox opens up new possibilities for applications in the creation of fully automatic diagnostic capillaric devices.

Graphical abstract: The reversible capillary field effect transistor: a capillaric element for autonomous flow switching

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 Aug 2024
Accepted
13 Dec 2024
First published
25 Dec 2024

Lab Chip, 2025, Advance Article

The reversible capillary field effect transistor: a capillaric element for autonomous flow switching

D. Mak, C. Meffan, J. Menges, R. Marchant-Ludlow, A. Hashemi, C. P. Moore, R. C. J. Dobson and V. Nock, Lab Chip, 2025, Advance Article , DOI: 10.1039/D4LC00706A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements