Solution-processable and photo-programmable logic gate realized by organic non-volatile floating-gate photomemory

Abstract

Programmable inverters using non-volatile floating-gate photomemories as basic building blocks instead of field-effect transistors enable the manipulation of threshold voltage by photons, providing an additional degree of freedom for applications in integrated circuits. However, the development of organic photo-controllable inverters is challenging due to issues such as solubility constraints for film stacking and the immaturity of photo-recordable devices. Notably, the development of organic non-volatile floating-gate photomemories (ONVFGPs) with n-type charge-transporting layers still lags behind that of the p-type layers due to the limited availability of suitable solution-processable charge-trapping materials and charge-transporting material pairs. Herein, photo-crosslinkable polystyrene-b-poly(methacrylic acid) (PS-b-PMAA)/5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP), which follows anti-Kasha's rule, is adopted as the charge-trapping layer for ONVFGPs. Both the second and first excited states of ZnTPP participate in photo-induced charge transfer, achieving the state-of-the-art photo-programming time of 0.1 second for ONVFGPs. The transfer curve of the derived photo-programmable inverter can be fine-tuned across a broad spectrum spanning from 405 nm to 830 nm, leading to at least six output states for the same input signal. This research confirms the possibility of integrated organic optoelectronics, opening avenues for solution-processable system-on-chip, neuromorphic computing and organic photonic integrated circuits.

Graphical abstract: Solution-processable and photo-programmable logic gate realized by organic non-volatile floating-gate photomemory

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
08 Jan 2025
Accepted
19 Mar 2025
First published
21 Mar 2025

Mater. Horiz., 2025, Advance Article

Solution-processable and photo-programmable logic gate realized by organic non-volatile floating-gate photomemory

Y. Lu, C. Hsu, S. Ke, K. Lai, H. Cheng, Y. Wang and J. Chen, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D5MH00036J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements