Recent advances in nanomaterial-based adsorbents for removal of pharmaceutical pollutants from wastewater
Abstract
To cope with the environmental risks posed by pharmaceutical waste, adsorption is considered a viable option due to its simplicity, cost-effectiveness, and reliability. This review explores the opportunities and challenges involved in applying nanomaterial-based adsorbents in their metallic, non-metallic, and hybrid forms for removal of common pharmaceuticals (e.g., antibiotics, beta-blockers, analgesics, non-steroidal anti-inflammatory drugs, endocrine disrupters, and anticancer drugs) from water. To improve the selectivity and scalability of diverse adsorbents against such targets, the adsorption capacity and partition coefficient (PC) of each adsorbent are evaluated. Among the reported materials, magnetic nitrogen-doped carbon displays the highest adsorption capacity (1563.7 mg g−1) for common targets such as ciprofloxacin, while carbon nanotube-SiO2–Al2O3 has the highest PC (1425 mg g−1 μM−1) for estradiol. Despite the advances in adsorption technologies, their commercial applications are yet limited by several defects such as low efficiency, high costs, and poor scalability. This review examines current strategies for addressing pharmaceutical contamination and outlines potential directions for future research.
- This article is part of the themed collection: Recent Review Articles