Nickel(ii)-mediated in situ complex formation with unexpected ligand transformations: crystal structures, DFT calculations, and catalytic activity in CO2 fixation reactions†
Abstract
Two transformed ligands, namely 1,3,5-triazapentadienato(imidoylamidinato) and N-(methoxy(pyrimidin-2-yl)(pyrimidine-2-carboxamido)methyl)pyrimidine-2-carboxamide, are reported here as the first products derived from 2-cyano pyridine/pyrimidine, respectively, under nickel metal mediation in the presence of hydroxylamine hydrochloride in situ. Two different nickel-coordinated complexes (1 and 2) were formed. Single crystal X-ray diffraction revealed that complex 1 is a mononuclear complex with tetra-coordinated square planar geometry, whereas complex 2 is a dinuclear complex with hexa-coordinated distorted octahedral geometry. The synthetic pathways of both transformed ligands are explained with the support of energy calculations of different states via density functional theory (DFT) calculations. The catalytic addition reactions of epoxides and carbon dioxide efficiently produce organic cyclic carbonates in the presence of complexes 1–2, attributed to the presence of Lewis acidic nickel and Lewis basic centers, such as free amine, imine, methoxy, or nitrogen in complexes 1 and 2. Under mild reaction conditions (1 atm CO2 pressure and 60 °C temperature), different types of epoxides (exocyclic, endocyclic, and aromatic epoxides) yield high levels of respective cyclic carbonates in the presence of both complexes 1–2 as catalysts, with tert-butylammonium bromide (TBAB) acting as a co-catalyst. The high turnover number (TON) and turnover frequency (TOF) of these catalytic reactions clearly indicate the efficacy of the two catalysts.