The effect of on-site and inter-site Hubbard correction in the thermoelectric properties of quaternary Heusler alloys NaHfXSn (X = Co, Rh, Ir): a first-principles study

Abstract

The Hubbard-corrected density functional theory (DFT) has been shown to effectively mitigate self-interaction errors in studying the properties of various materials. However, its effectiveness in evaluating the thermoelectric properties of non-magnetic semiconducting quaternary Heusler alloys remains largely unexplored. In this study, we apply GGA, GGA+U, and its extensions GGA+U+V, along with spin–orbit coupling (SOC), to examine the structural, electronic, elastic, thermodynamic, and thermoelectric properties of the non-magnetic NaHfXSn (X = Co, Rh, Ir) quaternary Heusler alloys. The Hubbard parameters (on-site U and inter-site V) are determined self-consistently using density-functional perturbation theory, eliminating the need for empirical inputs. For more precise optical property analysis, we use the Sternheimer method within the framework of time-dependent density functional theory (TDDFT). Our results show maximum thermoelectric efficiency (figure of merit) at 1200 K, with ZT values of approximately 1.02, 0.86, and 0.71 for X = Co, Rh, and Ir, respectively, indicating the potential of these materials for high-temperature thermoelectric device applications.

Graphical abstract: The effect of on-site and inter-site Hubbard correction in the thermoelectric properties of quaternary Heusler alloys NaHfXSn (X = Co, Rh, Ir): a first-principles study

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Nov 2024
Accepted
09 Feb 2025
First published
10 Feb 2025

New J. Chem., 2025, Advance Article

The effect of on-site and inter-site Hubbard correction in the thermoelectric properties of quaternary Heusler alloys NaHfXSn (X = Co, Rh, Ir): a first-principles study

R. Zosiamliana, L. Celestine, S. Gurung, Y. R. Devi, N. S. Singh, A. Yvaz, A. Laref and D. P. Rai, New J. Chem., 2025, Advance Article , DOI: 10.1039/D4NJ04897K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements