Issue 2, 2025

Analogous copper nanoclusters (Cu16/17) with two electron superatomic and mixed valence copper(ii)/copper(i) and copper(i)/copper(0) characters

Abstract

The reported copper nanoclusters (Cu NCs) of either CuII or CuI or mixed valence (MV) CuII/CuI or CuI/Cu0 characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as CuII/CuI and CuI/Cu0, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)12CuI15CuII4-S)](PF6)3 (1), [(MeL4)12CuI15Cu04-S)]ClO4·8C7H8 (2) and [(L4)12CuI15Cu02(DMF)](PF6)3·C2H5OH·2C7H8 (3), where XL4 = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu16 NCs, 1 and 2, feature a central sulfido-S (Ss) bridged tetracopper SsCu4 core inside a sphere-shaped Cu12S12 truncated octahedron. As 1 and 2 have a non-metal (chalcogen or halogen) central atom (here Ss) instead of a metallic Cu core inside the Cu12S12 shell, they are of the inverse coordination complex (ICC) category, rather than superatomic with a core–shell (the core is a metal and the shell is a metal–ligand framework) structure. The NC 1, in the presence of polar solvents, converts to a two electron superatomic Cu17 NC, 3. The NC 3 features a trigonal pyramidal-shaped Cu4 core inside a modified Cu12S12, i.e. Cu13S12 shell. The transformation of 1 to 3 may be visualized as the replacement of the central sulfido-S by an extra Cu atom (generated from decomposed molecules of 1) and the shifting of a Cu atom of the SsCu4 unit to the Cu12S12 shell, resulting in a Cu13S12 shell. The present work offers the first example of (i) an ICC that has Cu0 character (i.e.2), (ii) a superatomic Cu NC (i.e.3) stabilized by an aromatic thiol-S donor ligand and (iii) spontaneous ICC (i.e.1) → superatomic NC (i.e.3) conversion that does not require any reducing agent, but rather occurs in the presence of a dioxygen oxidant. The probable mechanisms for the reversible 13 conversions have been discussed. The presence of Ss in 1 and 2 unveils the first evidence of benzene thiol C–S bond cleavage, to the best of our knowledge. The spectroelectrochemical studies shed light on the choice of CuII/CuI and CuI/Cu0 character of 1 and 2, respectively, which is supported by high resolution XPS and Cu LMM Auger spectroscopy.

Graphical abstract: Analogous copper nanoclusters (Cu16/17) with two electron superatomic and mixed valence copper(ii)/copper(i) and copper(i)/copper(0) characters

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2024
Accepted
14 Nov 2024
First published
14 Nov 2024

Nanoscale, 2025,17, 982-991

Analogous copper nanoclusters (Cu16/17) with two electron superatomic and mixed valence copper(II)/copper(I) and copper(I)/copper(0) characters

S. Kumar, S. Mishra, A. Das, K. Mahiya, S. Laha, M. Maji and A. K. Patra, Nanoscale, 2025, 17, 982 DOI: 10.1039/D4NR03578J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements